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The Multi-weight Extension to
The Diffusion Monte Carlo Method

● Correlated results associated to small changes 
of the interparticle interacting potential can be 
obtained in a single run

● Almost a single set of walkers is used to 
compute the properties of a system described 
by different potentials
– Allows straightforward calculations of the energies 

associated with the potentials and their difference 
without any approximation

– Accurate calculations of small energies differences
● This is an extension easy to implement and test



  

Applications in
Systems of Helium Atoms

● Selection of the best two-body component of 
the interatomic potential

● Analysis of three-body contributions to the 
interatomic potential

● Choice of a damping factor for the Axilrod-
Teller Muto triple-dipole term

● Change of the amplitude of a three-body 
exchange potential 



  

Motivations
● Results for the EOS for the solid phase were 

not satisfactory as those for the liquid phase 
where at all densities values of the energy per 
atom were in agreement with experiment

● The role of individual contributions of the three-
body components in the interatomic potential in 
the description of some properties of a system 
of helium atoms were not known
– “Ab initio” exchange calculations that differ by an 

order of magnitude
– Enhance the physical content of the analytical 

functions use to fit the three-body contributions



  

Example of an application of the 
MW-DMC method:

Three-body contributions
in the description of the

condensed phases of 4He

● In order to investigate these contributios we 
have considered three different Hamiltonians



  

A system with only
two-body interactions

● V
2  

is the ab initio potential of Korona and 
collaborators where retardation effects have 
been introduced by Janzen and Aziz

H 2=−
ℏ2

2m∑
i=1

N

∇ ri

2V 2R ,  where R≡{r1r2rN }



  

The Axilrod-Teller Muto
triple-dipole three-body term

● V
ddd 

is the damped Axilrod-Teller Muto triple-
dipole potential V

DDD

H 2ddd=−
ℏ2

2m∑
i=1

N

∇ ri

2   V 2ddd R
V 2V ddd

V ddd=V DDD f 3 r ij , f 3 r ik , f 3r jk ,

● Damping factors of the Tang-Toennies form

f 3 r ij ,=1−∑
k=0

3

e− r  r k /k !

– δ is a parameter determined using the MW-DMC



  

The exchange term in the
three-body interatomic potential

● V
ex 

= AV
CM

 is the exchange potential of Cohen 
and Murrell 

 
times an amplitude A

– The amplitude A was determined as well employing 
the MW-DMC

H 3=−
ℏ2

2m∑
i=1

N

∇ r i

2    V 3R
V 2V dddV ex



  

Some technical details

● A single guiding function is used for all the 
Hamiltonias we consider

● Standard diffusion and weight update
● Each walker carries more than one weight

– One for each potential we want to consider
● Slight generalization of the branching rules



  

The guiding functions

● The liquid phase: a function of the Jastrow form

● The solid phase: a function of the Nosanow-
Jastrow form

● Certainly more accurate guiding functions could 
be used as well

G R=∏
i j

f ij  where f ij=exp[ b
∣r i−r j∣

5]

G R=∏
i j

f ij∏
i

exp [−C2 ∣r i−li∣
2]



  

Diffusion

● The sampling of a new walker R'     R is 
standard, i. e.,

Gd R , R=4D−3N /2 exp [−R−R '−4DvDR ' 
2

4D ]
– where vD=2∇ lnG   is the drift force

D=ℏ2/2m  the diffusion coefficient
   the time step



  

Weights update

● For each of the Hamiltonias m={2, 2ddd, 3} we 
are considering the weight update w '(m)      w(m) 
is standart

wm=w' mGb
mR , R ' 

Gb
mR , R ' =exp[−

2
E L

mRE L
mR ' ET

m]
E L

m R=
H mG

G

● E
T

(m) is a parameter changed during the 
simulation so that w(m) ≈ 1



  

Branching

● If walker i has min(w
i
(2), w

i
(2ddd), w

i
(3)) ≥ 2 then it is 

split in two
– each one with weigths (w(2)/2, w(2ddd)/2, w(3)/2)

● If a walker j has max(w
j
(2), w

j
(2ddd), w

j
(3)) < 0.3 

then it is put aside



  

Combining walkers

● If we have two walkers j and k with all their 
weights less than 0.3 they are combined 
according to the following rules
–  with probability

   ascribe to walker j the sum of weights associated 
with Hamiltonian m ={2, 2ddd, 3}, otherwise assign 
the value 0

– if all weights of a walker are zero, delete this walker
– otherwise both walkers are kept

rm=
w j

m

w j
mwk

m



  

Comments about the
combination of walkers

● Worst case: walkers i and j will finish with weights 
given say by
– ( w

j
(2) + w

k
(2), 0, 0) and (0, w

j
(2ddd) + w

k
(2ddd), w

j
(3) + w

k
(3))

● In principle we do not have any problem in 
considering both walkers in the weighted averages 
used in the calculations of the energies E

m

– However we are destroying the correlations among the 
results we want to bild

– Fortunately the number of such walkers can be minimized 
by the choice of the threshold for walkers recombination

● For a threshold of 0.3, less than 5% of the walkers carry one of 
their weights equal to zero



  

Estimation of the energies

Em=
∑i

wmRiE L
mRi

∑i
wmRi

● At every evaluation of the energy cicle through 
m={2, 2ddd, 3}



  

EOS for the liquid phase

Energy at ρ0

E2 -7.316 ± 0.008

E2ddd -7.195 ± 0.008

E3 -7.171 ± 0.008

Exp -7.170



  

EOS for the solid phase

Energy at ρ*=32.55

E2 -4.822 ± 0.009

E2ddd -4.491 ± 0.009

E3 -4.509 ± 0.009

Exp -4.50



  

Comments

● In the interatomic potential we have introduced 
two adjustable parameters
– δ=20.35 nm-1        The parameter δ of the Tang-

Toennies damping function f
3
(r,δ)  in the triple-

dipole term     

– A=4.0       The amplitude A of the Cohen and 
Murrell exchange term

● At all densities in both the solid and liquid 
phases we are able to get energies per atom in 
agreement with experiment



  

ρ
melting

, ρ
freezing

 and ρ
0
 Densities

Potential ρm ρf ρ0
V2 29.07 ± 0.32 26.05 ± 0.32 22.10 ± 0.13

V2ddd 29.04 ± 0.31 26.09 ± 0.31 21.87 ± 0.14

V3 28.93 ± 0.31 25.95 ± 0.31 21.82 ± 0.14

Exp 28.568 25.970± 0.005  21.834



  

E
ddd 

the energy associated to the
triple-dipole term

● E
ddd 

 is computed without 
any approximation from 
the correlated energies 
E

2ddd
 and E

2
 at each time 

they are evaluated

E
ddd 

= E
2ddd

 – E
2



  

E
ex 

the energy associated to the
exchange term

● Similary, E
ex 

 is computed 
without any approximation 
from the correlated 
energies E

3
 and E

2ddd
 at 

each time they are 
estimated

E
ex 

= E
3
 – E

2ddd



  

Final Comments
● In despite of its small contribution to the total 

energy, V
ex 

 can not be negleted if agreement with 
experiment is wanted in both phases of the system

● The need of an amplitude factor A=4.0 in the “ab 
initio” exchange term is more than an indication 
that this component of our interatomic potential 
might have some problems

● The MW extension to the DMC method is a reliable 
tool to compare results obtained with similar 
potentials and a way to choose the best description 
of the system
– Application to study bound states of some molecular 

systems


