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Heisenberg's gedanken experiments in quantum mechanics have given rise 
to a widespread belief that the indeterminacy relations holding for the variables 
o f  a quantul system can be explained quasiclassically in terms o f  a distnrbance 
suffered by the system in interaction with a quantal measurement, or state 
preparation, agent. There are a number o f  criticisms o f  this doctrine in the 
literature, which are critically examined in this article and found to be in- 
inconclusive, the chief error being the eonflation o f  this disturbance with the 
projection postulate. We present a critique o f  the disturbance theory based 
on the fact that the required disturbance will in general depend on the inter- 
action time o f  the system and state-preparer. This point is exploited in the 
construction o f  a spin-interaction model which aets as a counterexample to the 
disturbance doctrine, while remaining faithful to the spirit o f  Heisenberg's 
gedanken experiments. Several consequences o f  this result are discussed. 

1. INTRODUCTION 

In the foundations of elementary quantum mechanics (QM) the well-known 
problems concerning the theoretical treatment of the measuring process 
may be conveniently separated into two compartments. In the first, there 
are considerations pertaining to the effect that such a process has on the 
measuring instrument. How can the final macroscopic states of the pointer 
on the instrument be reconciled with the linear laws of QM ? Such a question 
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7. Brown and Redhead 

has received enormous attention in the literature and is perhaps the most 
fundamental issue in the foundations of the theory. On the other hand, 
there are questions concerned with the effect of the observation interaction 
on the object system. In this respect, a prevailing assumption is, loosely 
speaking, that the object system is somehow irreducibly and unpredictably 
disturbed in the course of observation, and moreover that this disturbance 
is the seat of the indeterminacy which is a characteristic feature of each 
quantal system. 

It is with this second issue that we are concerned in this paper. We 
shall attempt to clarify the content of the disturbance theory, and after an 
analysis of several existing critical discussions of it, which we find to be 
severally inconclusive, we construct a counterexample to the theory. 

The disturbance doctrine is an offspring of the celebrated analysis 
due to Heisenberg in the late twenties of idealized measurement processes. 4 
Heisenberg in fact uses two sorts of argument in the course of his discussion. 

In the case of the microscope experiment, and also the Doppler momen- 
tum-measurement experiment, an :incoming light particle (which may be 
considered the measuring system) collides with an electron (the object system), 
the collision being governed by the classical laws of conservation of energy 
and linear momentum. In both cases, the light particle is endowed with 
quantal fluctuations which correspond to the use of the Einstein-de Broglie 
relations for the energy and momentum for these systems. The electron may 
be effectively considered a classical particle, which in interaction with the 
quantal measuring agent gains quantal fluctuations, as witnessed by the final 
indeterminacy relations obtained for it. 5 

However, in discussing the diffraction of an electron beam by a slit, 
Heisenberg derives the indeterminacy relations for the electrons emerging 
from the slit using quantal aspects of  the electrons, not of the diaphragm 
containing the slit (Ref. 1, pp. 23-24). In subsequent discussion of the single 
slit experiment by Bohr (Ref. 4, pp. 214--15), however, quantal aspects of  
the diaphragm containing the slit were regarded as responsible for the 
momentum uncertainty in the emerging beam. So Heisenberg's second sort 
of  example is apparently reducible to the first. We shall argue in what follows 
that this additional analysis supplied by Bohr is essentially misleading as an 

For details of the gedanken experiments, see Heisenberg. m For a historical account of 
their development, see Jammer. ~2) 
Recently, Roychouldhuri (8) has remarked in relation to the microscope experiment that 
later improvements in resolution techniques render the Rayleigh criterion of the finite 
resolving power of the microscope overly restrictive. It was the Rayleigh criterion that 
Heisenberg, following a suggestion by Bohr, used in deriving the indeterminacy relations. 
In such cases of "super resolution," in principle Heisenberg's general arguments may be 
used to violate the indeterminacy relations. 
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explanation of quantal indeterminacy for the electron in the single-slit 
experiment, and that Heisenberg's original analysis in terms of quantal 
aspects of the electron is the line that should be uniformly adopted in dis- 
cussing the other experiments, such as the Doppler momentum measurement, 
etc. 

Indeed Bohr himself in his later writings retreated from the disturbance 
doctrine as an explanation of the uncertainty relations, emphasizing the 
wholeness of a quantal phenomenon involving the specification of the experi- 
mental arrangement in classical terms, rather than mechanical transmission 
of uncontrollable disturbance as the source of the characteristic features of 
the theory. This shift was apparently due to difficulties of understanding the 
Einstein-Podolsky-Rosen discussion in terms of a disturbance theory. 6 
We shall comment on this in Section 2. 

A version of  the disturbance theory can also be found in the classic 
Bohr and Rosenfeld (7) paper on the quantization of the radiation field. 
In this work, the authors developed a quasiclassical analysis of field measure- 
ment, where the field (the object system) and measurement process are treated 
classically, except that the material test charge (the measuring agent) is 
subject to quantal indeterminacies. This treatment yielded indeterminacies 
in the measured field strengths which exactly match those yielded by the 
formal quantum theory of radiation. 

In all these discussion, then, the originally well-defined observables 
corresponding to the respective object systems are considered to be "dis- 
turbed" in the course of the interaction, and the resulting indeterminacies 
in the values of the observables are consistent with the familiar theoretical 
dispersion relations for self-adjoint operators on Hilbert space. In a famous 
passage Heisenberg expressed the situation as follows: "...the interaction 
between observer and object causes uncontrollable and large changes in the 
system being observed because of  the discontinuous changes characteristic 
of  atomic processes. ' 'm 

In more recent times, a certain degree of clarity has been gained in the 
discussion of such questions by distinguishing between measurement processes 
and state-preparation processes. Strictly speaking, insofar as they are con- 
concerned with post-interaction ensembles for the object system, the gedanken 

experiments we are referring to are concerned with state preparations and 
not measurements. Heisenberg m himself stressed that the uncertainty 
relations "do not refer to the past, ''v i.e., to the preinteraction ensemble. 
This point is important when the indeterminacy relations derived in the 

6 Bohr, CS) p. 700. Also see SchiebeJ ~) pp. 20 and 26. 
7 Heisenbergm was not always consistent in this respect, however. In the Doppler momen- 

tum-measurement experiment, Apv Ay ,~ h is derived for the precollision electron. But 
the result goes through, from the same premisses, for the postcollision electron as well. 
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g e d a n k e n  experiments are compared with those derived directly f rom quan- 
tum theory. I f  A is a self-adjoint operator on Hilbert space, the s tandard 
deviation A A  is defined as follows: 

AA = [(A2> --  <A>21~/2 (1) 

where ( ' )  denotes mean value. It  follows f rom the properties o f  Hilbert 
space that for any self-adjoint operators A and B 

A A  • A B  ~ ½ I<[A,B])[ (2) 

where [ , ] denotes the commuta tor  bracket, s The standard deviations A A  

and A B  correspond to the dispersion of  A and B measurement outcomes 9 
predicted over an ensemble of  similarly prepared systems in a pure state. 
The relation (2) asserts the impossibility o f  preparing a dispersion-free 
quantal  ensemble. 1° 

We can now express the content o f  the disturbance theory more precisely 
as follows. The relation (2) is the formal  conterpart  of  indeterminacy in the 
observables of  the object system caused by a disturbance in the state-pre- 
parat ion procedure,  which produces uncontrollable fluctuations in the in- 
compatible variables. The general thesis that  quantal indeterminacy in a 
system I is a result o f  physical interaction with a quantal state-preparing 
agency II,  we refer to henceforth as the disturbance theory o f  indeterminacy 
(DTI). 

2. E X I S T I N G  C R I T I C I S M S  

There is a tendency to regard the projection postulate within the formal  
theory of  measurement in Q M  as the formal expression of  the disturbance 
phenomenon  (e.g., Ref. 14, pp. 197-98; Ref. 15, p. 418). Indeed, the unpre- 
dictable, discontinuous nature o f  the ~b-state evolution for the object system 
as entailed by the postulate establishes a certain parallelism with the DTI .  
Taking  the simplest case o f  measurement o f  a nondegenerate observable 

s Robertson.~S) For a more general expression for AA • AB, see SchrSdinger tg) or Synge. (x°} 
Notice that if for a certain pair A and B it happens that [A, B] is not a constant of the 
motion, then the minimum value for AA • AB will be a time-dependent quantity. Such 
is the case with angular momentum operators, as we shall see in Section 3. 

9 We denote by A and B both the operators and the corresponding observables. 
~s That the indeterminacy relations are concerned with state-preparation procedures and 

not measurements, and that they place no constraints on the accuracy of individual 
measurements, are points that have been stressed, albeit controversially, by a growing 
number of commentators. See, for example, Margenau, (m, Popper, (1~) and Ballentine. a3) 
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O with a purely discrete spectrum, n the projection postulate can be formulate 
as follows in the usual ensemble interpretation of  the statistical algorith m 
of  quantum mechanics. I f  the density operator for the initial ensemble 
represented by a pure state ~b is p = P~, then the density operator appro- 
priate to the subensemble obtained by selecting those systems that yielded 
a value a~ on measuring the observable O is p" = P%, where ~ is the eigen- 
vector corresponding to the measured value a~. The transition O-+ p" is  

made up of  two distinct steps. First we have the transition p---, p ' =  
~2~ 1(c% ] ~)I ~ P% which is induced in the original ensemble by the physical 
interaction with the measurement apparatus. This change in density operator 
arises from what may be termed nonselective measurement. The additional 
change p' --+ p" arises from the selection of  the appropriate subensemble from 
the post-measurement ensemble described by p'. This latter transition is not 
of  course produced by any physical effect. 

Various questions arise. If  the measurement constitutes a state prepa- 
ration for an ensemble of  systems described by the state vector c~,,,, then 
the satisfaction of the projection postulate is necessarily true since the tran- 
transition to any density operator other than P% would by definition not 
constitute the indicated state preparation. ~ Having settled the question 
of  whether the projection postulate is true with respect to state preparation, 
we can ask whether the transition p --~ p' can in any way be subsumed under 
causal Schr~Sdinger-type time evolution. This is the central problem of  the 
so-called theory of  measurement in QM, which is outside the scope of  this 
paper. Next, what is the relation between the transition p ~ p", or more 
simply ~b-÷ c~, which expresses the projection postulate, and the DTI?  
Suppose ~b is already an eigenstate of some operator O' which does not com- 
mute with O. Then in the final state ~ ,  O' will become indeterminate. This 
is supposed to be explained by the DTI  insofar as it affords an explanation 
of  the uncertainty relations appropriate to the state c~.. But the DTI  does 
not explain the transition d~ --~ c~, which shows how one quantum mechani- 
cal state is replaced by another; rather, its purported function is to explain 
quasiclassicalty the origin of  the indeterminacy relations appoicable to both 
the states ~b and ~ with respect to the noncommuting observables O and 
O' in terms of the state-preparation procedures for the initial state ~ or the 
final state c~,. 

Conflation of  the disturbance of the ~b state described in the projection 
postulate with the disturbance described in the informal DTI  is prevalent 
in some discussions of proposed objections to the DTI. Thus Park a6) has 

n For a discussion of how to formulate the projection postulate for measurement of 
degenerate observables see Herbut, ~33~ who gives references to the relevant literature. 

12 For measurements which do not constitute state preparations of the sort described, 
the projection postulate is of course necessarily false. 
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constructed a formal measurement scheme in which two distinguishable 
spin..½- systems (one playing the role of  the object, the other the instrument) 
interact in such a way that the ¢ state of  the object system is not disturbed, 
but is "transferred" to the instrument. Park concludes that disturbance 
is not an inevitable feature of  the measurement act. But the argument is 
irrelevant to the DTI  since Park's  measurement scheme is not a state-pre- 
paration device, and the disturbance which Park eliminates in his example 
is anyway referring to the alteration in the quantum mechanical state, which 
as we have seen is a different animal from that envisaged in the DTI.  Indeed 
the DT[  is logically prior to any formal theory of  measurement in QM since 
it presupposes a quantal nature for the instrument (state-preparer) only, and 
it makes no sense in the D T I  to suppose that the ¢ state of  the object must 
undergo continuous, or for that matter, discontinuous (as when the pro- 
jection postulate is presupposed) motion in measurement. 

Another objection to the D T I  concerns the behavior of  correlated, 
distant systems of the kind first discussed so significantly by Einstein et al. a7~ 

Let us consider, in the manner of  Bohm and Aharonov,(18) a pair of  separated 
spin-½ systems A, B governed at time t by the spherically symmetric wave 
function 

~,'(t) = (1/-vJ~)[C-÷(A) ® ¢_(B) - -  ¢_(.4) ® ¢+(B)] 

where ¢_(A) is the spin-up state of A, etc. 
Now suppose ~ is chosen for measurement on A at t, yielding the 

result --1. Then in accordance with the projection postulate, system B 
is immediately after the measurement in the state ¢_(B), which means that 
the vaIue of  ~x on B is --1,  and those of  o-~ and ~ on B are indeterminate. 
Bohm and Aharonov argue that this result is incompatible with the DTI,  
since the disturbance in the measurement on A first "does not explain why 
particle B ... realizes its potentiality for a definite spin in precisely the same 
direction as that of  A" and second "it cannot explain the fluctuations of  the 
other two components of  the spin of  particle B. ' ' is 

Let us take these two points in order: As to the first, the D T I  does not, 
it is true, explain how the value of  ~ on B becomes definite in response to 
the distant measurement on A. Of  course, this result is a direct outcome of  
the correlations built into the state T ( t ) ,  and if a further (local) explanation 

1~ Ref. I8. It may be noted that these authors do not conclude that the disturbance theory 
is false, but on the contrary they assume its validity and so infer that the correlated 
behavior of A, B is paradoxical. This is quite a different interpretation of the "paradox" 
of such correlated systems from that found in the original paper of Einstein et aL In 
the above, we construe the argument of Bohm and Aharonov as an objection to the DTI, 
treating the correlation behavior as a straightforward theorem of QM. 
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is felt necessary, the D T I  does not  pretend to encompass such behavior. 
As we have defined it, the D T I  is concerned with explaining the origin o f  
quantal indeterminacy, and not  with the manner  in which the indeterminacies 
are resolved into definite values as a result o f  measurement,  either local or  
otherwise. (Again, the misunderstanding may be expressed as arising in the 
conflation o f  disturbance in the D T I  with the projection postulate.) As to 
the second point, the physical effect o f  measurement is not  to create indeter- 
minacies in the values o f  ~ and a~ on B, but  rather to induce the nonselective 
transition 

i 1 

The values o f  a~,  a~,  and ~ were already indeterminate for  B prior to the 
measurement on A according to the state ~ ( t )  and it is well known that  the 
probabilistic properties o f  any spin component  o f  B (excluding of  course 
correlations with the spin components  of  A) are unchanged when p is replaced 
by p'. I t  would appear, in conclusion, that  the features o f  distant correlated 
systems in QM do not  furnish a convincing objection to the DTI .  1~ 

The final objection to the theory we shall consider is based on the pheno- 
menon  of  potential barrier penetration in QM. I f  a particle with (expected) 
energy E enters a potential barrier o f  magnitude V, where E < V, then it 
would seem that the conservation o f  energy implies that  in the region o f  
potential V, the kinetic energy of  the particle must  be negative, which is 
impossible. The question then arises whether the missing energy of  the par- 
ticle in the classically inaccessible region is supplied by the disturbance 
produced in the measurement or by the state preparat ion o f  the particle 
prior to entry o f  the barrier. This  latter possibility is ruled out  by the following 
considerations~2~-~3~: 

1~ Another argument, very similar to that of Bohm and Aharonov, which is based on the 
negative-result-type experiment of Renninger, (19) may be formulated against the DTI. 
In the celebrated two-slit experiment, if a detector placed at one of the two open slits 
fails to register the passage of the particle, this result is tantamount to the detection of 
the particle through the remaining slit. A specially chosen ensemble of such negative 
results would not yield the interference distribution at the detection screen, and thus the 
mere presence of the detector at the original slit is said to disturb the system without the 
detector entering into physical interaction with it. (This ts essentially the principle 
underlying the recent argument against disturbance as a physical interaction of 
Yoshihuku, (~°~ although the author uses the more complicated example of a double 
Stern-Gertach experiment. For related discussions, see the account in Jammer] 2~ 
pp. 495-496.) However, as in the case of the correlated systems, this "disturbance" does 
not create indeterminacies in the manner which is of interest to us, and is similarly the 
physical expression of the projection postulate, here identified with the collapse of 
the wave function at the unguarded slit. 
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(a) The determination of the energy of the particle prior to penetration 
may be as gentle as we please. 

(b) The energy gap V-E can always be made larger than the interaction 
energy of the state preparation procedure. 

We remark that both Bohm (24) and Fong (25) attempt to explain barrier 
penetration in terms of the disturbance suffered by the particle due to its 
detection once within the barrier. But this approach fails to explain quasi- 
classically how the particle made the penetration in the first place. 

The fact that the DTI is incapable of elucidating the penetration process 
is considered by some to diminish its plausibility. 

However, the motivation for introducing the DTI into the discussion, 
viz. the problem of negative kinetic energy, is misguided. We have for the 
Hamiltonian of the particle at position x 

H(x) : p2/2m + V(x) 

The claim that the kinetic energy is negative in the potential barrier is a con- 
sequence of the belief that the total value of the energy of the system is the 
sum of the values of the kinetic and potential energy terms. However, the 
quantum mechanical law of conservation of energy states that ( H )  is constant, 
and is silent concerning the relationship between values of the kinetic and 
potential energies for individual particles. 15 Thus it does not follow that the 
kinetic energy of the particle in the classically inaccessible region is negative. 1G 

3. A COUNTEREXAMPLE 

In this section we examine, by way of a specific model, the relationship 
between the disturbance phenomenon in state preparation and the time of 
interaction between object and state-preparer. Our analysis is motivated by 
the simple observation that in state preparation processes that are not instan- 
taneous, the swapping of indeterminacy from the quantal preparing agent 
to the object system in the quasiclassical description will generally be a 
function of the interaction period. Whether this should pose a difficulty 
to the DTI depends on the interaction in question. 

In order to clarify this last point, let us consider a simple one-dimensional 
elastic collision (along the x axis) between identical particles of mass /~. 
The incoming particle 2 has initial momentum p~. The particle 1 is assumed 

15 Compare Gardner ~-06) for a discussion of this point. 
16 All that we can infer is that (V(x)) < (H(x)) = E, so that the particle can never be 

confined entirely in the classically inaccessible region. 
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to be initially at rest in the laboratory frame; its postcollision momentum 
is p'.17 Conservation of linear momentum and of energy implies 

Pl' ==' P2, p~' = 0  
so that 

Apl '  = Ap2 

We assume that for particle 2 (the quantal agant) 

Ap2 Ax2 ~ t~ 

As a result of the initial indeterminacy Ax~,  the instant of collision is inde- 
terminate to the extent 

T = tz Ax2/p2 ~ Ixh/(p2 zlpa') 

Thus the coordinate xl has the indeterminacy 

So 

Axl  ........ Tpl' t~h Pl' _ h 
IX P~ Apl '  tx Apl' 

Ap:( A x (  .~ h (3) 

As in Heisenberg's gedanken experiments, the "disturbance" suffered 
by the object system I results in the system acquiring quantal indeterminacy. 
Now we may imagine particles having force fields with finite ranges, with 
the result that they repel each other within some finite distance. Thus we can 
picture, for example, a finite Hooke's law spring, with mass negligable 
in relation to Ix, lying along the x axis between the two particles prior to 
collision. In this case it can be shown that relation (3) obtains only after 
all the potential energy gained in the spring by the impingement &particle 2 
is completely converted into the kinetic energy of particle 1, i.e., after par- 
ticle 1 has decoupled itself from the spring. 

in this case, the time taken for the spring to compress and relax marks 
the complete period of interaction for the "state preparation" of particle 1. 
However, in the next example, which will be developed in more detail, 
there is no similar naturally specified complete interaction period. In this 
way, it is ambiguous when the full swapping of indeterminacies should be 
expected to have occurred. The analysis of coupled spin systems suggests 
itself because it is capable of being straightforwardly treated both fully 
quantum mechanically, and quasiclassically in the present sense. This allows 
a detailed comparison to be made between the two treatments. We begin 
with the quantal treatment. 

17 The prime will be used to denote postcollision value. 
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3.1. Quantum Mechanical Treatment 

Consider two spin-~ systems 1 and 2 which interact according to the 
interaction Hamiltonian 

//IN T :-: g% • % 

where g is the intensity factor3 s % and % are assumed to commute with the 
free Hamiltonians for the individual systems. The total Hamiltonian is 
thus effectively 

Now, since 
i / / 6 ,=  [a~,H] for i =  1,2 

then using the following relation for angular momentum operators in QM, 
where A is any vector operator commuting with a, 

[ a ' A , a ]  = 2 i a  X h 
we obtain 

~ = -(2g/~)( , ,~ x ~.~) 

~2 = (2g/h)(~l X ~2) (4) 

d = O  where ~ =  a 1 + %  

We see that the total angular momentum is conserved. Suppose now 
that the initial (t = O) state of  the joint system is represented by 

7*0 = (1/~/2) a l l )  @ {o~(2) ÷/3(2)} 

where a(1) and/3(1) denote the spin-up and spin-down states, respectively, 
of system 1 in the z direction, etc. 7-' o most closely resembles the situation 
envisaged in the gedanken experiments where the object (system 1) is originally 
supposed to be in a welt-defined state with respect to the observable being 
measured, here % ,  and where the quantal agent (system 2) possesses inde- 
tenmnacy in this respect. 

The state of  the joint system at t > 0 is given by 

Now, 

so that 

~ = {exp[--(i/h) g(% • %) t]} W0 

, ,1 " ~ = ~ ( ~ 2  _ ~ _ ~ )  

7~, = {exp[ - ( i /h )  g ( ~  - 3) t]} % (5) 

is HINT is defined on the tensor product• 2 ® ~ 2  of the two-dimensional Hilbert spaces 
representing systems 1 and 2. For simplicity we write % instead of a ® 1, etc., where 
% and % are Pauli spin vector operators for the systems 1 and 2, respectively. 
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Spin indeterminacy of systems 1, 2 plotted 
against time. 

Now if {[(cr2),>} is the complete set of eigenvectors of cr 2 in 24 ~2 @ #f2 corre- 
sponding to eigenvalues (e2),, we can expand W 0 in terms of this basis: 

4 4 

tF0 ---= ~ a~ [(~rz),,.>, where E I a, ]2 = 1 
i = 1  i=i 

From (5) we now have 

t/jr = lexp [ i ~g  ~cr[1 z 3 ) t ] l  ~ al l(c~2)i> 

ig 1 3] = ~ ai (exp I-- -~-1 [~ (crY), - tl)l(cr~)i> 

Expressed in terms of the a's and/3's, the solution is 19 (putting h = 1) 

% = (1/~/2){041) @ o~(2) + }[1 + exp(4 ig t ) ]  c~(1) @/3(2) 

+ ½[1 -- exp(4 ig t ) ] /3 (1 )  @ a(2)} (6) 

Now we wish to derive the expressions for Ac% and Ae2,, the standard 
deviations of the z components of the spins of 1 and 2, respectively, as 
functions of time. From (I) and (6) we obtain 

t 1 5 A~l(2) z -- = ~[~ -- ( + )  2 cos 4gt  - -  ~ cos 8gt] 1/" 

These expressions are plotted in Fig. I. It is seen that the indeterminacy 
in the z component of the spin in system 2 is wholly transmitted to system 1 
after an interaction period t = ~r/4g, and as the interaction continues, the 
process is reversed, and so on. Now the commutator brackets of angular 

19 For a matrix treatment of coupled spin-½ systems with the same Hamiltonian, see 
Park. (16) 
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5 ~ I I : ~  :II = <O'lx) 

0 I :,.L 
/4g ~ 72g 

Fig. 2. The quantities A~-A(h= and ~:~h~) plotted 
against time. 

momentum operators are not constants of the motion, giving rise to time- 
dependent indeterminacy relations (see Section 1). In particular, from (2) 
we have 

Ao'(f" z~O"lz ~ <O'la.~> t (7) 

where 
<~,~>~ = ~ - ½ cos  4gt 

In Fig. 2 we plot the values o f  ZI(yl¢ j " Zlo ' lz  and @~> against time. Notice 
the periodic vanishing of  the product Aa~ • zto-~, which, despite the fact 
that al~ and eq~ do not commute, occurs at those times when @1~> vanishes, 
as is consistent with (7). 

3.2. The Quasidassieal Treatment 

Analogously to the quantal coupled spins case, we start with a pair 
of classical spinning systems 1 and 2 with respective angular momentum 
vectors L a and Lz whose interaction is governed by the Hamiltonian 

H = kL1 • Lz 

We have 
L~(~> = {LI(~I ,  H }  

where { , } is the Poisson bracket. It is readily verified that [compare with (4)] 

L1 = --kL1 x L 2 

L~- -kL : ,  × L~ 

L = O  where L = L I + L 2  

Now using 
L1 × L1 = L~ × L 2 = 0 
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we obtain 

L1 = --kL1 x L, L2 ........ kL2 x L (8) 

Equations (8) imply that the vectors L~ and L2 precess about the vector 
L with a fixed angular velocity. I f  we take I L~ I = [ L~ [, the tips of the vectors 
L t  and L~ lie in the same plane perpendicular to L. This behavior is depicted 
in Fig. 3, where the angular displacement 0 is given by 0 = kLt ,  where 
L----IL!. 

Now in order to mimic the quasMassical treatment of the gedanken 
experiments discussed in Section 1, we allow the initial (t = 0) Lz components 
to have "quantal" indeterminacy, denoted by AL°~ (i = x,  y,  z). What is 
of  interest is the way this indeterminacy in L2 is transmitted to system 1 
(the object system) as it interacts "~4th system 2 (the quantal agent). 

In solving for LI*, L~ ~ for time t > 0, we shall make use of the tensor 
treatment of rotation (Ref. 27, p. 96). If  L has the direction cosines n~ 
(i - -  x ,  y ,  z), and L°(2) represents the angular momentum vector of system 
1 (2) at t = 0, then the individual components of L1 *, say, are given in the 
summation convention by 

L~i - -  Ri~L°~ (i ...... x ,  y,  z)  (9) 

with 

Ri~ = cos 0 ~ + (1 -- cos 0) n~nk -- ei~ sin 0 n~ (I0) 

where e,k~ is the Levi-Civita symbol. The same identity (9) holds for L~o~. 

~ L 

//\ 
i I ~ 

I 

Fig. 3. The precession behavior 
of L1, L~ when l L1 t = t L21. 
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Now in solving for AL~(z)~ we shall go only to first order in AL°~. This 
simplifies the calculations and it is a reasonable approximation if the original 
indeterminacies AL~ are small in comparison with 1L~ ° ] == I L l  I. 

We have from (9) and (10) 

Now writing 

A L~ = 3 

3 Z1L *~ ~ -- o o (RieL2~) A L ~  8L2O ~ 

(ti) 

A , . i ~ -  ~LO Rik (12) 

we obtain from (11) by differentiation 

AL'~ = A~,kL°~ AL°m (13) 

Finally, using the identities 

~0 On~ ~n~ 1 

we can differentiate in (12) to obtain 

Am,  = -  
0 sin 0 

L (Hm?/iY/k - -  f/m ~ik) 

1 -- cos 0 
+ L (n~ 3i~ + ni 8k,~ -- 2ninkn~) 

eik~ [sin 0 3,m + (0 cos 0 --  sin 0) n,~n,] 
L 

(14) 

Equations (10), (13), and (14) allow us to compute the indeterminacy at 
time t in L1 and L2 arising from the original "quantal"  indeterminacies AL°~. 
As an example, we consider the following initial conditions: 

L1 ° = (0, L/2, L/2), L~ ° = (L/v'2, O, O) 

AL~ = --AL°~ = A; AL°x = 0 (t5) 

n, = n~ = 1/2; n~ = 1/V'2 

and the angle a in Fig. 3 is 45 °. 
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y ~  

Fig. 4. 

/ l /  o 

l 

Initial positions of the 
L ,  L~ vectors. 

F igure  4 depicts  the ini t ial  states o f  1 and 2. 
N o w  using (13), with the a id  o f  (10), (14), and  (15), we obta in  the simple 

results 

AL~, = --AL~I, = ½(1 - -  cos 0) A 

AL[, = --AL~ = ½(1 @ cos 0) A 
(16) 

W e  can compare  the  inde te rminacy  swapping in the quanta l  case in 
Fig .  1 with the cor responding  phenomenon  in this case, as depicted in 
Fig.  5 for  AL°, and  AL°~ as funct ions of  t (t = O/kL). 2° 

N o w  let us write  

Consis tent ly  with the  min imal  quan ta l  inde te rminacy  re la t ion for  angular  
m o m e n t u m  opera tors  in QM, we have for  the " q u a n t a l "  agent  2 at  t = 0 

[P2  ° I = A2 = ½h I(L%)I (17) 

s0 We may note in passing that the clean indeterminacy swapping of the two spins in our 
example is due to the fact that the initial uncertainties in the components of L2 are 
chosen in such a way as to not affect I L l, which controls the speed of precession. In 
general this would not be the case. We have chosen the simplest example that reproduces 
the main features of the quantum case: time dependence of (LI~), with an initial value 
of zero, and clean indeterminacy swapping. 
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/,, 

A 
2 

Fig. 5. 

~ -rr 

= AL~z 

~ t  

~ / k /  2r~/kk 

Spin indeterminacy of systems 1, 2 plotted 
against time. 

From the initial conditions (15) we have 

which yields from (17) the relation 

(18) 

Now, if the DTI holds for time t, then we expect 

Moreover, using (9), we obtain 

<L~) = (r/2 4 2 ) 0  - cos O) 

(19) 

(20) 

So fi'om (18)-(20) we conclude that the DTI obtains if 

I P / I  ~> -~(1 - c o s  O) A ~ 

However, the solutions (16) in fact yield 

1P1 ~1 "- k (1 - -cosO)  ~A ~ 

It follows that the object system 1 gains indeterminacies by way of 
interaction with 2 which are consistent with the quantal indeterminacy 
relations only for interaction periods corresponding to values of  0 that are 
integral multiples of  rr (or t = n r r / k L ,  n , =  1, 2, 3,...). In Fig. 6 we plot the 
curve (I) corresponding to the variation with time of the actual value of  
] P1 * J and the curve (II) corresponding to that of the required value of [/'1 t l 
to be consistent with the DTI. Figure 6 may be compared with Fig. 2 in the 
quantum mechanical treatment. 
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A2 

2 

0 I ' ~ "  ~ t 
~ /kL  2"re/kL 

Fig. 6. The actual (I) and required (II) values of 
I PI~I = I AL~ •AL[.  I plotted against time. 

In contrast to the linear collision example, consistency with the DTI 
is not retained once it is has been achieved, but is lost and regained in a 
cyclical manner. This difference in behavior follows from the different geo- 
metries of the two interaction processes: the open-ended linear collision and 
the periodic precession of the two spins about their vector sum. 

4. FURTHER CONSIDERATIONS 

In Section 3 we were concerned with technical considerations in con- 
nection with the explicit "disturbance" process in the DTI as it is expressed 
in the quasiclassical treatment of interaction processes. On a more general 
level, one may question the theoretical coherence of the notion in the DT[ 
that a quantal agent is responsible in measurement or state preparation for 
indeterminacy in the object system. Specifically, it may be asked from where 
the quantal indeterminacy inherent in the state-preparer originates. The DTI 
would appear to suggest another state preparation procedure, in which the 
object system is the quantal agent in the original state preparation process. 
But this introduces an endless regress. This regress is not avoided in the case, 
say, of Heisenberg's microscope experiment by arguing that quantal indeter- 
minacy is the intrinsic birthright of the photon, which is then transmitted 
to matter in the given interaction. It was seen in Section 1 that one can equally 
regard in the context of the DTI the quantal features of the electromagnetic 
field as acquired from quantal fluctuations inherent in the material test par- 
ticle. 

If  we have succeeded in all the foregoing to place in doubt the tenability 
of the DTI, it is worth mentioning a wider consequence of this result. Let 
us consider the question of  the necessity of quantizing the radiation field. 
It was suggested by Henley and Thirring (2s~ that the Bohr-Rosenfeld result 

825/Hld2-2 
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(see Section 1) effectively proves that inconsistencies arise unless the electro- 
magnetic field is quantized. This suggestion provoked a strongly worded 
denial by Rosenfeld, (29) who stressed that  the necessity o f  quantization is 
based ultimately on empirical and no t  logical considerations. Rosenfeld 
argued that the Bohr-Rosenfeld  result established obly " the  consistency 
of  the way in which the mathematical  formalism of  a theory embodying...  
quantization is linked with the classical concepts on which its u se in analyzing 
the phenomena  rests." A position similar to that  o f  Henley and Thirring 
was taken also by Heitler (8°) and more recently by Kalckar.  (~1) 

Al though not  all the arguments in favor of  the necessity o f  field quanti- 
zation advanced by these authors on the basis o f  the 13ohr-Rosenfeld result 
are strictly identical, the main element o f  reasoning seems to be the following. 
If, in accordance with the disturbance theory, fluctuations in the field com- 
ponents are brought  about  by a perturbat ion caused by the quantal test 
particle, then in the formal field theory the field components  must obey 
the appropriate commutat ion  relations, in precisely the way that the Heisen- 
berg gedanken experiments demand that q-numbers, rather than c-numbers, 
represent the dynamical variables associated with material bodies. According 
to this viewpoint, the ineradicable and uncontrollable fluctuations which 
prevent a measurement f rom being effectively disturbance-free are the hall- 
mark  o f  the quantal properties o f  the domain o f  reality under  consideration. 
I t  can be concluded that  this argument  for  field quantization, resting as it 
does on the DTI,  is as weak as the disturbance doctrine itself. ~1 

The source o f  the indeterminacy relations is not  to be sought then in the 
disturbance by interaction with another  quantal system, but rather is an in- 
herent property o f  the first system along the lines suggested by Heisenberg's 

21 We are maintaining then that there is no inconsistency in allowing interaction between 
a quantal and a nonquantal system (or indeed between systems with different values 
of h; cf. Messiah] 14~ p. t49, who argues that this would lead to inconsistency). However, 
the detailed theory of such an interaction would, of course, be subject to certain con- 
straints. Taking again the case of the single-slit experiment with a nonquantal slit, we 
could not correlate a single position and a range of momentum values of the slit simul- 
taneously with corresponding position and momentum eigenstates of the electron-- 
indeed the momentum variable of the slit might now have to be equated with the ex- 
pectation value for the momentum of the electron. Thus conservation of momentum 
would be satisfied only on the average, as between slit and electron. So the detailed 
formalism of such a hypothetical hybrid theory might involve some unusual physical 
effects, but would not lead to logical incoherence. Eppley and Hannah ~3e) argue that 
the interaction of a quantal and a nonquantal system impties giving up one or another 
of several alternative principles, such as the strict conservation of momentum we have 
just described, but they include among their alternatives the uncertainty relations for 
the quantal system. This possibility is in our opinion ruled out, since, by hypothesis, 
the quantal system has no states violating the uncertainty relations to get itself into. 
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original  reasoning  abou t  the  single-slit experiment .  Ins tead  o f  modi fy ing  
the a rgumen t  in this  case to  co r respond  to the s i tuat ion in the  o ther  gedanken 
exper iments  as suggested by  Bohr,  we would  r ecommend  exact ly  the reverse 
emendat ion.  
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