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PREFACE

This book offers an introduction to some of the central topics in the
contemporary methodology and philosophy of natural science. In order
to meet the exigencies of the available space, I decided to deal with a
limited number of important issues in some detail rather than to attempt
a sketchy survey of a wider range of subjects. Although the book is
elementary in character, I have sought to avoid misleading oversimpli-
fication, and I have pointed out several unresolved issues that are among
the subjects of current research and discussion.

Readers who wish to explore more fully the questions here ex-
amined or to acquaint themselves with other problem areas in the
philosophy of science will find suggestions for further reading in the
brief bibliography at the end of this volume.

A substantial part of this book was written in 1964, during the last
months of a year I spent as a Fellow of the Center for Advanced Study
in the Behavioral Sciences. I am happy to express my appreciation for
that opportunity.

Finally, I extend warm thanks to the editors of this series, Elizabeth
and Monroe Beardsley, for their valuable advice, and to Jerome B. Neu
for his efficient help in reading the proofs and preparing the index.

CARL G. HEMPEL
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SCOPE AND AIM

OF THIS BOOK

The different branches of scientific inquiry may be divided into two
major groups: the empirical and the nonempirical sciences. The former
seck to explore, to describe, to explain, and to predict the occurrences
in the world we live in. Their statements, therefore, must be checked
against the facts of our experience, and they are acceptable only if they
are properly supported by empirical evidence. Such evidence is obtained
in many different ways: by experimentation, by systematic observation,
by interviews or surveys, by psychological or clinical testing, by careful
examination of documents, inscriptions, coins, archeological relics, and
so forth. This dependence on empirical evidence distinguishes the em-
pirical sciences from the nonempirical disciplines of logic and pure
‘mathematics, whose propositions are proved without essential reference
to empirical findings.

The empirical sciences in turn are often divided into the natural
sciences and the social sciences. The criterion for this division is much
less clear than that which distinguishes empirical from nonempirical
inquiry, and there is no general agreement on precisely where the divid-
ing line is to be drawn. Usually, the natural sciences are understood to
include physics, chemistry, biology, and their border areas; the social
sciences are taken to comprise sociology, political science, anthropology,
economics, historiography, and related disciplines. Psychology is some-
times assigned to one field, sometimes to the other, and not infrequently
it is said to overlap both.

In the present series of books, the philosophy of the natural sciences
and the philosophy of the social sciences are dealt with in different
volumes. This separation of topics is to serve the practical purpose of
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192 Philosophy of Natural Science

permitting a more adequate discussion of the large field of the philosophy
of science; it is not intended to prejudge the question whether the divi-
sion is also of systematic significance, i.e., whether the natural sciences
differ fundamentally from the social sciences in subject matter, objec-
tives, methods, or presuppositions. That there are such basic differences
between those large fields has been widely asserted, and on various
interesting grounds. A thorough exploration of these claims requires a
close analysis of the social sciences as well as of the natural sciences
and thus goes beyond the scope of this little volume. Nevertheless, our
discussion will shed some light on the issue. For from time to time in
our exploration of the philosophy of the natural sciences, we will have
occasion to cast a comparative glance at the social sciences, and we
will see that many of our findings concemning the methods and the
rationale of scientific inquiry apply to the social as well as to the natural
sciences. The words ‘sciences’ and ‘scientific’ will therefore often be used
to refer to the entire domain of empirical science; but when clarity
demands it, qualifying phrases will be added.

The high prestige that science enjoys today is no doubt attributable
in large measure to the striking successes and the rapidly expanding
reach of its applications. Many branches of empirical science have come
to provide a basis for associated technologies, which put the results of
scientific inquiry to practical use and which in turn often furnish pure
or basic research with new data, new problems, and new tools for
investigation.

But apart from aiding man in his search for control over his environ-
ment, science answers another, disinterested, but no less deep and per-
sistent, urge: namely, his desire to gain ever wider knowledge and ever
deeper understanding of the world in which he finds himself. In the
chapters that follow, we will consider how these principal objectives of
scientific inquiry are achieved. We will examine how scientific knowl-
edge is arrived at, how it is supported, and how it changes; we will con-
sider how science explains empirical facts, and what kind of understand-
ing its explanations can give us; and in the course of these discussions, we
will also touch upon some more general problems concerning the pre-
suppositions and the limits of scientific inquiry, scientific knowledge, and
scientific understanding.



SCIENTIFIC INQUIRY:

INVENTION AND TEST

21 Acase As a simple illustration of some important aspects of scientific
history as an inquiry let us consider Semmelweis’ work on childbed fever. Ignaz
example  Semmelweis, a physician of Hungarian birth, did this work during
the years from 1844 to 1848 at the Vienna General Hospital. As a
member of the medical staff of the First Maternity Division in the
hospital, Semmelweis was distressed to find that a large proportion of
the women who were delivered of their babies in that division contracted
a serious and often fatal illness known as puerperal fever or childbed
fever. In 1844, as many as 260 out of 3,157 mothers in the First Division,
or 8.2 per cent, died of the disease; for 1845, the death rate was 6.8 per
cent, and for 1846, it was 11.4 per cent. These figures were all the
more alarming because in the adjacent Second Maternity Division of
the same hospital, which accommodated almost as many women as the
First, the death toll from childbed fever was much lower: 2.3, 2.0, and
2.7 per cent for the same years. In a book that he wrote later on the
causation and the prevention of childbed fever, Semmelweis describes

his efforts to resolve the dreadful puzzle.!

He began by considering various explanations that were current at
the time; some of these he rejected out of hand as incompatible with
well-established facts; others he subjected to specific tests.

1'The story of Semmelweis’ work and of the difficulties he encountered forms a
fascinating page in the hi of medicine. A detailed account, which includes
translations and paraphrases of large portions of Semmelweis’ writings, is given in
W. |. Sinclair, Semmelweis: His Lits and His Doctrine (Manchester, Erngland: Man-
chester University Press, 1909). Brief quoted phrases in this chapter are taken from
this work. The highlights of Semmelweis’ career are recounted in the first chapter of
P. de Kruif, Men Against Death (New York: Harcourt, Brace & World, Inc., 1932).
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One widely accepted view attributed the ravages of puerperal fever
to “epidemic influences”, which were vaguely described as “atmospheric-
cosmic-telluric changes” spreading over whole districts and causing child-
bed fever in women in confinement. But how, Semmelweis reasons,
could such influences have plagued the First Division for years and
yet spared the Second? And how could this view be reconciled with the
fact that while the fever was raging in the hospital, hardly a case oc-
curred in the city of Vienna or in its surroundings: a genuine cpidemic,
such as cholera, would not be so selective. Finally, Semmelweis notes that
some of the women admitted to the First Division, living far from the
hospital, had been overcome by labor on their way and had given
birth in the street: yet despite these adverse conditions, the death rate
from childbed fever among these cases of “street birth” was lower than
the average for the First Division.

On another view, overcrowding was a cause of mortality in the First
Division. But Semmelweis points out that in fact the crowding was
heavier in the Second Division, partly as a result of the desperate ef-
forts of patients to avoid assignment to the notorious First Division.
He also rejects two similar conjectures that were current, by noting that
there were no differences between the two Divisions in regard to diet or
general care of the patients.

In 1846, a commission that had been appointed to investigate the
matter attributed the prevalence of illness in the First Division to in-
juries resulting from rough examination by the medical students, all of
whom received their obstetrical training in the First Division. Semmel-
weis notes in refutation of this view that (a) the injuries resulting
naturally from the process of birth are much more extensive than those
that might be caused by rough examination; (b) the midwives who
received their training in the Second Division examined their patients in
much the same manner but without the same ill effects; (¢) when, in
response to the commission’s report, the number of medical students was
halved and their examinations of the women were reduced to a mini-
mum, the mortality, after a brief decline, rose to higher levels than ever
before.

Various psychological explanations were attempted. One of them
noted that the First Division was so arranged that a priest bearing the
last sacrament to a dying woman had to pass through five wards before
reaching the sickroom beyond: the appearance of the priest, preceded
by an attendant ringing a bell, was held to have a terrifying and debili-
tating effect upon the patients in the wards and thus to make them more
likely victims of childbed fever. In the Second Division, this adverse
factor was absent, since the priest had direct access to the sickroom.
Semmelweis decided to test this conjecture. He persuaded the priest to

4



2 Scientific Inquiry: Invention and Test 195

come by a roundabout route and without ringing of the bell, in order
to reach the sick chamber silently and unobserved. But the mortality in
the First Division did not decrease.

A new idea was suggested to Semmelweis by the observation that in
the First Division the women were delivered lying on their backs; in the
Second Division, on their sides. Though he thought it unlikely, he
decided “like a2 drowning man clutching at a straw”, to test whether this
difference in procedure was significant. He introduced the use of the
lateral position in the First Division, but again, the mortality remained
unaffected.

At last, early in 1847, an accident gave Semmelweis the decisive
clue for his solution of the problem. A colleague of his, Kolletschka,
received a puncture wound in the finger, from the scalpel of a student
with whom he was performing an autopsy, and died after an agonizing
illness during which he displayed the same symptoms that Semmelweis
had observed in the victims of childbed fever. Although the role of micro-
organisms in such infections had not yet been recognized at the time,
Semmelweis realized that “cadaveric matter” which the student’s scalpel
had introduced into Kolletschka’s blood stream had caused his col-
league’s fatal illness. And the similarities between the course of Kol-
letschka’s disease and that of the women in his clinic led Semmelweis
to the conclusion that his patients had died of the same kind of blood
poisoning: he, his colleagues, and the medical students had been the
carriers of the infectious material, for he and his associates used to come
to the wards directly from performing dissections in the autopsy room,
and examine the women in labor after only superficially washing their
hands, which often retained a characteristic foul odor.

Again, Semmelweis put his idea to a test. He reasoned that if he
were right, then childbed fever could be prevented by chemically destroy-
ing the infectious material adhering to the hands. He therefore issued an
order requiring all medical students to wash their hands in a solution
of chlorinated lime before making an examination. The mortality from
childbed fever promptly began to decrease, and for the year 1848 it
fell to 1.27 per cent in the First Division, compared to 1.33 in the
Second.

In further support of his idea, or of his hypothesis, as we will also
say, Semmelweis notes that it accounts for the fact that the mortality
in the Second Division consistently was so much lower: the patients
there were attended by midwives, whose training did not include anatom-
ical instruction by dissection of cadavers.

The hypothesis also explained the lower mortality among “street
births”: women who arrived with babies in arms were rarely examined
after admission and thus had a better chance of escaping infection.

5
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Similarly, the hypothesis accounted for the fact that the victims of
childbed fever among the newborn babies were all among those whose
mothers had contracted the disease during labor; for then the infection
could be transmitted to the baby before birth, through the common
bloodstream of mother and child, whereas this was impossible when the
mother remained healthy.

Further clinical experiences soon led Semmelweis to broaden his
hypothesis. On one occasion, for example, he and his associates, having
carefully disinfected their hands, examined first a woman in labor who
was suffering from a festering cervical cancer; then they proceeded to
examine twelve other women in the same room, after only routine
washing without renewed disinfection. Eleven of the twelve patients died
of puerperal fever. Semmelweis concluded that childbed fever can be
caused not only by cadaveric material, but also by “putrid matter derived
from living organisms.”

2.2 Basic steps ‘We have seen how, in his search for the cause of childbed fever,
intestinga  Semmelweis examined various hypotheses that had been suggested
hypothesis  as possible answers. How such hypotheses are arrived at in the first

place is an intriguing question which we will consider later. First,
however, let us examine how a hypothesis, once proposed, is tested.

Sometimes, the procedure is quite direct. Consider the conjectures
that differences in crowding, or in diet, or in general care account for
the difference in mortality between the two divisions. As Semmelweis
points out, these conflict with readily observable facts. There are no
such differences between the divisions; the hypotheses are therefore
rejected as false.

But usually the test will be less simple and straightforward. Take the
hypothesis attributing the high mortality in the First Division to the
dread evoked by the appearance of the priest with his attendant. The
intensity of that dread, and especially its effect upon childbed fever,
are not as directly ascertainable as are differences in crowding or in diet,
and Semmelweis uses an indirect method of testing. He asks himself:
Are there any readily observable effects that should occur if the hypoth-
esis were true? And he reasons: If the hypothesis were true, then an
appropriate change in the priest’s procedure should be followed by a
decline in fatalities. He checks this implication by a simple experiment
and finds it false, and he therefore rejects the hypothesis.

Similarly, to test his conjecture about the position of the women
during delivery, he reasons: If this conjecture should be true, then
adoption of the lateral position in the First Division will reduce the
mortality. Again, the implication is shown false by his experiment, and
the conjecture is discarded.
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In the last two cases, the test is based on an argument to the effec.
that if the contemplated hypothesis, say H, is true, then certain observ-
able events (e.g., decline in mortality) should occur under specified
circumstances (e.g., if the priest refrains from walking through the wards,
or if the women are delivered in lateral position); or briefly, if H is
true, then so is I, where I is a statement describing the observable oc-
currences to be expected. For convenience, let us say that I is inferred
from, or implied by, H; and let us call I a test implication of the hypoth-
esis H. (We will later give 2 more accurate description of the relation
between I and H.)

In our last two examples, experiments show the test implication to

~ be false, and the hypothesis is accordingly rejected. The reasoning that
leads to the rejection may be schematized as follows:

If H is true, then so is I.
2a] But (as the evidence shows) I is not true.

H is not true.

Any argument of this form, called modus tollens in logic,? is de
ductively valid; that is, if its premisses (the sentences above the horizontal
line) are true, then its conclusion (the sentence below the horizontal
line) is unfailingly true as well. Hence, if the premisses of (2a) are
properly established, the hypothesis H that is being tested must indeed
be rejected.

Next, let us consider the case where observation or experiment bears
out the test implication I. From his hypothesis that childbed fever
is blood poisoning produced by cadaveric matter, Semmelweis infers that
suitable antiseptic measures will reduce fatalities from the disease. This
time, experiment shows the test implication to be true. But this favorable
outcome does not conclusively prove the hypothesis true, for the under-
lying argument would have the form

If H is true, then so is I.
2b] (As the evidence shows) I is true,

H is true.

And this mode of reasoning, which is referred to as the fallacy of af-
firming the consequent, is deductively invalid, that is, its conclusion may
be false even if its premisses are true® This is in fact illustrated by
Semmelweis’ own experience. The initial version of his account of child-
bed fever as a form of blood poisoning presented infection with cadaveric
matter essentially as the one and only source of the disease; and he was
right in reasoning that if this hypothesis should be true, then destruction

% For details, see another volume in this series: W. Salmon, Logic, pp. 24-25.
3 See Salmon, Logic, pp. 27-29.
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of cadaveric particles by antiseptic washing should reduce the mortality.
Furthermore, his experiment did show the test implication to be true.
Hence, in this case, the premisses of (2b) were both true. Yet, his
hypothesis was false, for as he later discovered, putrid material from
living organisms, too, could produce childbed fever.

Thus, the favorable outcome of a test, i.e, the fact that a test
implication inferred from a hypothesis is found to be true, does not
prove the hypothesis to be true. Even if many itnplications of a hypsh-
esis have been borne out by careful tests, the hypothesis may stili be
false. The following argument still commits the fallacy of afirming the
consequent:

If His true, thensoare I, Ip, .. ., I,
2c]  (As the evidence shows) Iy, I, . . ., I, are all true.

H is true.

This, too, can be illustrated by reference to Semmelweis’ final hypothesis
in its first version. As we noted earlier, his hypothesis also yields the test
implications that among cases of street births admitted to the First
Division, mortality from puerperal fever should be below the average for
the Division, and that infants of mothers who escape the illness do not
contract childbed fever; and these implications, too, were borne out by
the evidence — even though the first version of the final hypothesis was
false.

But the observation that a favorable outcome of however many
tests does not afford conclusive proof for a hypothesis should not lead
us to think that if we have subjected a hypothesis to a number of tests
and all of them have had a favorable outcome, we are no better off
than if we had not tested the hypothesis at all. For each of our tests
might conceivably have had an unfavorable outcome and might have
led to the rejection of the hypothesis. A set of favorable results obtained
by testing different test implications, I,,I,,...Is, of a hypothesis, shows
that as far as these particular implications are concerned, the hypothesis
has been borne out; and while this result does not afford a complete
proof of the hypothesis, it provides at least some support, some partial
corroboration or confirmation for it. The extent of this support will
depend on various aspects of the hypothesis and of the test data. These
will be examined in Chapter 4.

Let us now consider another example,* which will also bring to our
attention some further aspects of scientific inquiry.

4 The reader will find a fuller account of this example in Chap. 4 of ]. B. Conant’s
fascinating book, Science and Common Sense (New Haven: Yale University Press,
1951). A letter by Torricelli setting forth his hypothesis and his test of it, and an

eyewitness report on the Puy-de-Ddéme experiment are reprinted in W. F. Magie,
A Source Book in Physics (Cambridge: Harvard University Press, 1963), pp. 70-75.
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As was known at Galileo’s time, and probably much earlier, a simple
suction pump, which draws water from a well by means of a piston that
can be raised in the pump barrel, will lift water no higher than about
34 feet above the surface of the well. Galileo was intrigued by this
limitation and suggested an explanation for it, which was, however,
unsound. After Galileo’s death, his pupil Torricelli advanced a new
answer. He argued that the earth is surrounded by a sea of air, which, by
reason of its weight exerts pressure upon the surface below, and that
this pressure upon the surface of the well forces water up the pump
barrel when the piston is raised. The maximum length of 34 feet for the
water column in the barrel thus reflects simply the total pressure of the
atmosphere upon the surface of the well.

It is evidently impossible to determine by direct inspection or ob-
servation whether this account is correct, and Torricelli tested it in-
directly. He reasoned that if his conjecture were true, then the pressure
of the atmosphere should also be capable of supporting a proportionately
shorter column of mercury; indeed, since the specific gravity of mercury
is about 14 times that of water, the length of the mercury column should
be about 34/14 feet, or slightly less than 2% feet. He checked this
test implication by means of an ingeniously simple device, which was, in
effect, the mercury barometer. The well of water is replaced by an open
vessel containing mercury; the barrel of the suction pump is replaced by
a glass tube sealed off at one end. The tube is completely filled with
mercury and closed by placing the thumb tightly over the open end. It is
then inverted, the open end is submerged in the mercury well, and the
thumb is withdrawn; whereupon the mercury column in the tube
drops until its length is about 30 inches—just as predicted by Torricelli’s
hypothesis. '

A further test implication of that hypothesis was noted by Pascal,
who reasoned that if the mercury in Torricelli’s barometer is counter-
balanced by the pressure of the air above the open mercury well, then its
length should decrease with increasing altitude, since the weight of the
air overhead becomes smaller. At Pascal’s request, this implication was
checked by his brother-in-law, Périer, who measured the length of the
mercury column in the Torricelli barometer at the foot of the Puy-de-
‘Ddme, a mountain some 4,800 feet high, and then carefully carried the
apparatus to the top and repeated the measurement there while a con-
trol barometer was left at the bottom under the supervision of an
assistant. Périer found the mercury column at the top of the mountain
more than three inches shorter than at the bottom, whereas the length
of the column in the control barometer had remained unchanged

throughout the day.
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23Therole  We have considered some scientific investigations in which a prob-
ofinduction  lem was tackled by proposing tentative answers in the form of
inscientific  hypotheses that were then tested by deriving from them suitable
inquiry  test implications and checking these by observation or experiment.
But how are suitable hypotheses arrived at in the first place?
It is sometimes held that they are inferred from antecedently collected
data by means of a procedure called inductive inference, as contradis-
tinguished from deductive inference, from which it differs in important
respects.

In a deductively valid argument, the conclusion is related to the
premisses in such a way that if the premisses are true then the con-
clusion cannot fail to be true as well. This requirement is satisfied, for

example, by any argument of the following general form:

If p, then q.
Itis not the case that q.

It is not the case that p.

Brief reflection shows that no matter what particular statements may
stand at the places marked by the letters ‘p’ and ‘q’, the conclusion will
certainly be true if the premisses are. In fact, our schema represents the
argument form called modus tollens, to which we referred earlier.

Another type of deductively valid inference is illustrated by this
example:

Any sodium salt, when put into the flame of a Bunsen burner,

turns the flame yellow.

This piece of rock salt is a sodium salt.

This piece of rock salt, when put into the flame of a Bunsen

bumer, will turn the flame yellow.

Arguments of the latter kind are often said to lead from the
general (here, the premiss about all sodium salts) to the particular (a
conclusion about the particular piece of rock salt). Inductive inferences,
by contrast, are sometimes described as leading from premisses about
particular cases to a conclusion that has the character of a general law
or principle. For example, from premisses to the effect that each of the
particular samples of various sodium salts that have so far been subjected
to the Bunsen flame test did turn the flame yellow, inductive inference
supposedly leads to the general conclusion that all sodium salts, when
put into the flame of a Bunsen burner, turn the flame yellow. But in
this case, the truth of the premisses obviously does not guarantee the
truth of the conclusion; for even if it is the case that all samples of
sodium salts examined so far did turn the Bunsen flame yellow, it
remains quite possible that new kinds of sodium salt might yet be found

10



2 Scientific Inquiry:Invention and Test 201

that do not conform to this generalization. Indeed, even some kinds
of sodium salt that have already been tested with positive result might
conceivably fail to satisfy the generalization under special physical con-
ditions (such as very strong magnetic fields or the like) in which they
have not yet been examined. For this reason, the premisses of an in-
ductive inference are often said to imply the conclusion only with more
or less high probability, whereas the premisses of a deductive inference
imply the conclusion with certainty.

The idea that in scientific inquiry, inductive inference from ante-
cedently collected data leads to appropriate general principles is clearly
embodied in the following account of how a scientist would ideally
proceed: :

If we try to imagine how a mind of superhuman power and reach, but
normal so far as the logical processes of its thought are concemed,
. . . would use the scientific method, the process would be as follows:
First, all facts would be observed and recorded, without selection or
a priori guess as to their relative importance. Secondly, the observed
and recorded facts would be analyzed, compared, and classified, with-
out hypothesis or postulates other than those necessarily involved in
the logic of thought. Third, from this analysis of the facts generaliza-
tions would be inductively drawn as to the relations, classificatory or
causal, between them. Fourth, further research would be deductive as
well as inductive, employing inferences from previously established
generalizations.® ’

This passage distinguishes four stages in an ideal scientific inquiry:
(1) observation and recording of all facts, (2) analysis and classification
of these facts, {3) inductive derivation of generalizations from them,
and (4) further testing of the generalizations. The first two of these
stages are specifically assumed not to make use of any guesses or hypoth-
eses as to how the observed facts might be interconnected; this restric-
tion seems to have been imposed in the belief that such preconceived
ideas would introduce a bias and would jeopardize the scientific objec-
tivity of the investigation.

But the view expressed in the quoted passage—I will call it the
narrow inductivist conception of scientific inquiry—is untenable, for
several reasons. A brief survey of these can serve to amplify and to
supplement our earlier remarks on scientific procedure.

First, a scientific investigation as here envisaged could never get off
the ground. Even its first phase could never be carried out, for a col-
lection of all the facts would have to await the end of the world, so to
speak; and even all the facts up to now cannot be collected, since there

5 A. B. Wolfe, “Functional Economics,” in The Trend of Economics, ed. R. G,
Tugwell (New York: Alfred A. Knopf, Inc,, 1924), p. 450 (italics are quoted).

11
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are an infinite number and variety of them. Are we to examine, for
example, all the grains of sand in all the deserts and on all the beaches,
and are we to record their shapes, their weights, their chemical composi-
tion, their distances from each other, their constantly changing tempera-
ture, and their equally changing distance from the center of the moon?
Are we to record the floating thoughts that cross our minds in the tedious
process? The shapes of the clouds overhead, the changing color of the
sky? The construction and the trade name of our writing equipment?
Our own life histories and those of our fellow investigators? All these,
and untold other things, are; after all, among “all the facts up to now”.

Perhaps, then, all that should be required in the first phase is that
all the relevant facts be collected. But relevant to what? Though the
author does not mention this, let us suppose that the inquiry is con-
cerned with a specified problem. Should we not then begin by collecting
all the facts—or better, all available data—relevant to that problem?
This notion still makes no clear sense. Semmelweis sought to solve one
specific problem, yet he collected quite different kinds of data at differ-
ent stages of his inquiry. And rightly so; for what particular sorts of
data it is reasonable to collect is not determined by the problem under
study, but by a tentative answer to it that the investigator entertains in
the form of a conjecture or hypothesis. Given the conjecture that mor-
tality from childbed fever was increased by the terrifying appearance of
the priest and his attendant with the death bell, it was relevant to collect
data on the consequences of having the priest change his routine; but it
would have been totally irrelevant to check what would happen if doc-
tors and students disinfected their hands before examining their patients.
With respect to Semmelweis’ eventual contamination hypothesis, data
of the latter kind were clearly relevant, and those of the former kind
totally irrelevant.

Empirical “facts” or findings, therefore, can be qualified as logically
relevant or irrelevant only in reference to a given hypothesis, but not in
reference to a given problem.

Suppose now that a hypothesis H has been advanced as a tentative
answer to a research problem: what kinds of data would be relevant to
H? Our earlier examples suggest an answer: A finding is relevant to H
if either its occurrence or its nonoccurrence can be inferred from H.
Take Torricelli's hypothesis, for example. As we saw, Pascal inferred
from it that the mercury column in a barometer should grow shorter if
the barometer were carried up a mountain, Therefore, any finding to the
effect that this did indeed happen in a particular case is relevant to the
hypotheses; but so would be the finding that the length of the mercury
column had- remained unchanged or that it had decreased and then
increased during the ascent, for such findings would refute Pascal’s test
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implication and would thus disconfirm Torricelli’s hypothesis. Data of
the former kind may be called positively, or favorably, relevant to the
hypothesis; those of the latter kind negatively, or unfavorably, relevant.

In sum, the maxim that data should be gathered without guidance
by antecedent hypotheses about the connections among the facts under
study is sclf-defeating, and it is certainly not followed in scientific
inquiry. On the contrary, tentative hypotheses are needed to give
direction to a scientific investigation. Such hypotheses determine, among
other things, what data should be collected at a given point in a scien-
tific investigation.

It is of interest to note that social scientists trying to check a
hypothesis by reference to the vast store of facts recorded by the U.S.
Bureau of the Census, or by other data-gathering organizations, some-
times find to their disappointment that the values of some variable that
plays a central role in the hypothesis have nowhere been systematically
recorded. This remark is not, of course, intended as a criticism of data
gathering: those engaged in the process no doubt try to select facts |
that might prove relevant to future hypotheses; the observation is simply
meant to illustrate the impossibility of collecting “all the relevant data”
without knowledge of the hypotheses to which the data are to have
relevance.

" The second stage envisaged in our quoted passage is open to similar.
criticism. A set of empirical “facts” can be analyzed and classified in
many different ways, most of which will be unilluminating for the pur-
poses of a given inquiry. Semmelweis could have classified the women in
the maternity wards according to criteria such as age, place of residence,
marital status, dietary habits, and so forth; but information on these
would have provided no clue to a patient’s prospects of becoming a
victim of childbed fever. What Semmelweis sought were criteria that
would be significantly connected with those prospects; and for this
purpose, as he eventually found, it was illuminating to single out those
women who were attended by medical personnel with contaminated
hands; for it was with this characteristic, or with the corresponding class
of patients, that high mortality from childbed fever was associated.

Thus, if a particular way of analyzing and classifying empirical find-
ings is to lead to an explanation of the phenomena concerned, then it
must be based on hypotheses about how those phenomena are con-
nected; without such hypotheses, analysis and classification are blind.

Our critical reflections on the first two stages of inquiry as en-
visaged in the quoted passage also undercut the notion that hypotheses
are introduced only in the third stage, by inductive inference from
antecedently collected data. But some further remarks on the subject
should be added here.

13
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Induction is sometimes conceived as a method that leads, by means
of mechanically applicable rules, from observed facts to corresponding
general principles. In this case, the rules of inductive inference would
provide effective canons of scientific discovery; induction would be a
mechanical procedure analogous to the familiar routine for the multi-
plication of integers, which leads, in a finite number of predetermined
and mechanically performable steps, to the corresponding product.
Actually, however, no such general and mechanical induction procedure
is available at present; otherwise, the much studied problem of the
causation of cancer, for example, would hardly have remained unsolved
to this day. Nor can the discovery of such a procedure ever be expected.
For—to mention one reason—scientific hypotheses and theories are
usually couched in terms that do not occur at all in the description of
the empirical findings on which they rest, and which they serve to
explain. For example, theories about the atomic and subatomic struc-
ture of matter contain terms such as ‘atom’, ‘electron’, ‘proton’, ‘neutron’,
‘psi-function’, etc.; yet they are based on laboratory findings about the
spectra of various gases, tracks in cloud and bubble chambers, quantita-
tive aspects of chemical reactions, and so forth—all of which can be
described without the use of those “theoretical terms”. Induction rules
of the kind here envisaged would therefore have to provide a mechanical
routine for constructing, on the basis of the given data, a hypothesis or
theory stated in terms of some quite novel concepts, which are no-
where used in the description of the data themselves. Surely, no general
mechanical rule of procedure can be expected to achieve this. Could
there be a general rule, for example, which, when applied to the data
available to Galileo concerning the limited effectiveness of suction
pumps, would, by a mechanical routine, produce a hypothesis based on
the concept of a sea of air?

To be sure, mechanical procedures for inductively “inferring” a
hypothesis on the basis of given data may be specifiable for situations
of special, and relatively simple, kinds. For example, if the length of
a copper rod has been measured at several different temperatures, the
resulting pairs of associated values for temperature and length may be
represented by points in a plane coordinate system, and a curve may be
drawn through them in accordance with some particular rule of curve
fitting. The curve then graphically represents a general quantitative hy-
pothesis that expresses the length of the rod as a specific function of
its temperature. But note that this hypothesis contains no novel terms;
it is expressible in terms of the concepts of temperature and length,
which are used also in describing the data. Moreover, the choice of
“associated” values of temperature and length as data already presup-
poses a guiding hypothesis; namely, that with each value of the tempera-
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ture, exactly one value of the length of the copper rod is associated,
so that its length is indeed a function of its temperature alone. The
mechanical curve-fitting routine then serves only to select a particular
function as the appropriate one. This point is important; for suppose
that instead of a copper rod, we examine a body of nitrogen gas en-
closed in a cylindrical container with a movable piston as a lid, and that
we measure its volume at several different temperatures. If we were to
use this procedure in an effort to obtain from our data a general hypoth-
esis representing the volume of the gas as a function of its temperature,
we would fail, because the volume of a gas is a function both of its
temperature and of the pressure exerted upon it, so that at the same
temperature, the given gas may assume different volumes.

Thus, even in these simple cases, the mechanical procedures for
the construction of a hypothesis do only part of the job, for they
presuppose an antecedent, less specific hypothesis (i.e., that a certain
physical variable is a function of one single other variable), which is not
obtainable by the same procedure.

There are, then, no generally applicable “rules of induction”, by
which hypotheses or theories can be mechanically derived or inferred
from empirical data. The transition from data to theory requires creative
imagination. Scientific hypotheses and theories are not derived from
observed facts, but invented in order to account for them. They consti-
tute guesses at the connections that might obtain between the phenom-
ena under study, at uniformities and patterns that might underlie their
occurrence. “Happy guesses” ¢ of this kind require great ingenuity, espe-
cially if they involve a radical departure from current modes of scientific
thinking, as did, for example, the theory of relativity and quantum theory.
The inventive effort required in scientific research will benefit from a
thorough familiarity with current knowledge in the field. A complete
novice will hardly make an important scientific discovery, for the ideas
that may occur to him are likely to duplicate what has been tried before
or to run afoul of well-established facts or theories of which he is not
aware.

Nevertheless, the ways in which fruitful scientific guesses are ar-
rived at are very different from any process of systematic inference. The

¢ This characterization was given already by William Whewell in his work The
Philosophy of the Inductive Sciences, 2nd ed. (London: John W. Parker, 1847); II,
41. Whewell also speaks of “invention” as “part of induction” (p. 46). In the same
vein, K. Popper refers to scientific hypotheses and theories as “conjectures”; see, for
example, the essay “Science: Conjectures and Refutations” in his book, Conjectures
and Refutations (New York and London: Basic Books, 1962). Indeed, A. B. Wolfe,
whose narrowly inductivist conception of ideal scientific procedure was quoted earlier,
stresses that “the limited human mind” has to use “a greatly modified procedure”,

requiring scientific imagination and the selection of data on the basis of some “work-
ing hypothesis” (p. 450 of the essay cited in note 5).
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chemist Kekulé, for example, tells us that he had long been trying un-
successfully to devise a structural formula for the benzene molecule
when, one evening in 1865, he found a solution to his problem while he
was dozing in front of his fireplace. Gazing into the flames, he scemed
to see atoms dancing in snakelike arrays. Suddenly, one of the snakes
formed a ring by seizing hold of its own tail and then whirled mockingly
before him. Kekulé awoke in a flash: he had hit upon the now famous
and familiar idea of representing the molecular structure of benzene by
a hexagonal ring. He spent the rest of the night working out the conse-
quences of this hypothesis.”

This last remark contains an important reminder concerning the
objectivity of science. In his endeavor to find a- solution to his problem,
the scientist may give free rein to his imagination, and the course of his
creative thinking may be influenced even by scientifically questionable
notions. Kepler’s study of planetary motion, for example, was inspired by
his interest in a mystical doctrine about numbers and a passion to
demonstrate the music of the spheres. Yet, scientific objectivity is safe-
guarded by the principle that while hypotheses and theories may be
freely invented and proposed in science, they can be accepted into the
body of scientific knowledge only if they pass critical scrutiny, which
includes in particular the checking of suitable test implications by
careful observation or experiment.

Interestingly, imagination and free invention play a similarly im-
portant role in those disciplines whose results are validated exclusively
by deductive reasoning; for example, in mathematics. For the rules of
deductive inference do not afford mechanical rules of discovery, either.
As illustrated by our statement of modus tollens above, those rules are
usually expressed in the form of general schemata, any instance of
which is a deductively valid argument. If premisses of the specified kind
are given, such a schema does indeed specify a way of proceeding to a
logical consequence. But for any set of premisses that may be given, the
rules of deductive inference specify an infinity of validly deducible con-
clusions. Take, for example, one simple rule represented by the following
schema:

.
porg
It tells us, in effect, that from the proposition that p is the case, it follows
that p or q is the case, where p and q may be any propositions whatever.
The word ‘or’ is here understood in the “nonexclusive” sense, so that ‘p

T Cf. the quotations from Kekulé’s own report in A. Findlay, A Hundred Years of
Chemistry, 2nd ed. (London: Gerald Duckworth & Co., 1948), p. 37; and W.I.B.
Beveridge, The Art of Scientific Investigation, 3rd ed. (London: William Heine-
mann, Litd.,, 1957), p. 56.
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or ¢’ is tantamount to ‘either p or q or both p and q'. Clearly, if the
premiss of an argument of this type is true, then so must be the con-
clusion; hence, any argument of the specified form is valid. But this one
rule alone entitles us to infer infinitely many different consequences
from any one premiss. Thus, from ‘the Moon has no atmosphere’, it
authorizes us to infer any statement of the form ‘The Moon has no
atmosphere, or ¢, where for ‘¢’ we may write any statement whatsoever,
no matter whether it is true or false; for example, ‘the Moon’s atmos-
phere is very thin’, ‘the Moon is uninhabited’, ‘gold is denser than
silver’, ‘silver is denser than gold’, and so forth. (It is interesting and not
difficult to prove that infinitely many different statements can be formed
in English; each of these may be put in the place of the variable ‘q".)
Other rules of deductive inference add, of course, to the variety of state-
ments derivable from one premiss or set of premisses. Hence, if we are
given a set of statements as premisses, the rules of deduction give no
direction to our inferential procedures. They do not single out one state-
ment as “the” conclusion to be derived from our premisses, nor do they
tell us how to obtain interesting or systematically important conclusions;
they provide no mechanical routine, for example, for deriving signifi-
cant mathematical theorems from given postulates. The discovery of
important, fruitful mathematical theorems, like the discovery of im-
portant, fruitful theories in empirical science, requires inventive ingenu-
ity; it calls for imaginative, insightful guessing. But again, the interests
of scientific objectivity are safeguarded by the demand for an objective
validation of such conjectures. In mathematics, this means proof by
deductive derivation from axioms. And when a mathematical proposition
has been proposed as a conjecture, its proof or disproof still requires
inventiveness and ingenuity, often of a very high caliber; for the rules
of deductive inference do not even provide a general mechanical pro-
cedure for comstructing proofs or disproofs. Their systematic role is
rather the modest one of serving as criteria of soundness for arguments
offered as proofs: an argument will constitute a valid mathematical
proof if it proceeds from the axioms to the proposed theorem by a
chain of inferential steps each of which is valid according to one of the
rules of deductive inference. And to check whether a given argument is
a valid proof in this sense is indeed a purely mechanical task.
Scientific knowledge, as we have seen, is not arrived at by applying
some inductive inference procedure to antecedently collected data, but
rather by what is often called “the method of hypothesis”, i.e. by
inventing hypotheses as tentative answers to a problem under study, and
then subjecting these to empirical test. It will be part of such test to
see whether the hypothesis is borne out by whatever relevant findings
may have been gathered before its formulation; an acceptable hypothesis
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will have to fit the available relevant data. Another part of the test will
consist in deriving new test implications from the hypothesis and check-
ing these by suitable observations or experiments. As we noted earlier,
even extensive testing with entirely favorable results does not establish a
hypothesis conclusively, but provides only more or less strong support
for it. Hence, while scientific inquiry is certainly not inductive in the
narrow sense we have examined in some detail, it may be said to be
inductive in a wider sense, inasmuch as it involves the acceptance of
hypotheses on the basis of data that afford no deductively conclusive
evidence for it, but lend it only more or less strong “inductive support”,
or confirmation. And any “rules of induction” will have to be conceived,
in analogy to the rules of deduction, as canons of validation rather than
of discovery. Far from generating a hypothesis that accounts for given
empirical findings, such rules will presuppose that both the empirical
data forming the “premisses” of the “inductive argument” and a tenta-
tive hypothesis forming its “conclusion” are given. The rules of induc-
tion would then state criteria for the soundness of the argument. Ac-
cording to some theories of induction, the rules would determine the
strength of the support that the data lend to the hypothesis, and they
might express such support in terms of probabilities. In chapters 3 and
4 we will consider various factors that affect the inductive support and

the acceptability of scientific hypotheses.
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THE TEST OF A
HYPOTHESIS: ITS LOGIC

AND ITS FORCE

3.1 Experimental Now we turn to a closer scrutiny of the reasoning on which
vs.nonexperi- scientific tests are based and of the conclusions that may be
mental tests drawn from their outcomes. As before, we will use the word
‘hypothesis’ to refer to whatever statement is under test, no matter
whether it purports to describe some particular fact or event or to

express a general law or some other, more complex, proposition.

Let us begin with a simple remark, to which we will frequently have
to refer in the subsequent discussion: the test implications of a hypoth-
esis are normally of a conditional character; they tell us that under
specified test conditions, an outcome of a certain kind will occur, State-
ments to this effect can be put into the following explicitly conditional
form:

3a) If conditions of kind C are realized, then an event of kind E will
occur.

For example, one of the hypotheses considered by Semmelweis
yielded the test implication

If the patients in the First Division are delivered in lateral position,
then their mortality from childbed fever will decrease.

And one of the test implications of his final hypothesis was

If the persons attending the women in the First Division wash their
hands in a solution of chlorinated lime, then mortality from childbed
fever will decrease.
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Similarly, the test implications of Torricelli’s hypothesis included
conditional statements such as

If a Torricelli barometer is carried to increasing altitudes, then its
mercury column will correspondingly decrease in length.

Such test implications are thus implications in a twofold sense:
they are implications of the hypotheses from which they are derived, and
they have the form of if then sentences, which in logic are called con-
ditionals or material implications.

In each of the three examples just cited, the specified test condi-
tions C are technologically realizable and can thus be brought about at
will; and the realization of those conditions involves some control of a
factor (position during delivery; absence or presence of infectious matter;
pressure of the atmosphere overhead) that, according to the given
hypothesis, affects the phenomenon under study (i.e., incidence of child-
bed fever in the first two cases; length of the mercury column in the
third). Test implications of this kind provide a basis for an experimental
test, which amounts to bringing about the conditions C and checking
whether E occurs as implied by the hypothesis.

Many scientific hypotheses are expressed in quantitative terms. In
the simplest case, they will then represent the value of one quantitative
variable as a mathematical function of certain other variables. Thus, the
classical gas law, V = ¢.T/P, represents the volume of a body of gas
as a function of its temperature and pressure (¢ is a constant factor). A
statement of this kind yields indefinitely many quantitative test implica-
tions. In our example, these are of the following form: if the temperature
of a body of gas is T, and its pressure is P, then its volume is ¢-T,/P,.
And an experimental test then consists in varying the values of the
“independent” variables and checking whether the “dependent” variable
assumes the values implied by the hypothesis.

When experimental control is impossible, when the conditions C
mentioned in the test implication cannot be brought about or varied
by available technological means, then the hypothesis must be tested
nonexperimentally, by seeking out, or waiting for, cases where the speci-
fied conditions are realized by nature, and then checking whether E
does indeed occur.

It is sometimes said that in an experimental test of a quantitative
hypothesis, only one of the quantities mentioned in the hypothesis is
varied at a time, while all other conditions are kept constant. But this is
impossible. In an experimental test of the gas law, for example, the
pressure might be varied while the temperature is kept constant, or vice
versa; but many other circumstances will change during the process—
among them perhaps the relative humidity, the brightness of the illumi-
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nation, and the strength of the magnetic field in the laboratory—and
certainly the distance of the body of gas from the sun or moon. Nor is
there any reason to try to keep as many as possible of these factors
constant if the experiment is to test the gas law as specified. For the
law states that the volume of a given body of gas is fully determined
by its temperature and its pressure. It implies therefore that other
factors are “irrelevant to the volume” in the sense that changes in these
factors do not affect the volume of the gas. To allow such other factors
to vary is therefore to explore a wider range of cases in search of
possible violations of the hypothesis under test.

Experimentation, however, is used in science not only as a method
of test, but also as a method of discovery; and in this second context, as
we will now see, the requirement that certain factors be kept constant
makes good sense.

The use of experimentation as a method of test is illustrated by
Torricelli’s and Périer’s experiments. Here, a hypothesis has been ante-
cedently advanced, and the experiment is performed to test it. In
certain other cases, where no specific hypotheses have as yet been pro-
posed, a scientist may start with a rough guess and may use experimenta-
tion as a guide to a more definite hypothesis. In studying how a metal
wire is stretched by a weight suspended from it, he might conjecture
that the quantitative increase in length will depend on the initial
length of the wire, on its cross section, on the kind of metal it is made of,
and on the weight of the body suspended from it. And he may then
perform experiments to determine whether those factors do influence the
increase in length (here, experimentation serves as a method of test),
and if so, just how they affect the “dependent variable”—that is, just
what the specific mathematical form of the dependence is (here, ex-
perimentation serves as a method of discovery). Knowing that the length
of a wire varies also with its temperature, the experimenter will, first
of all, keep the temperature constant, to eliminate the disturbing in-
fluence of this factor (though later on, he may systematically vary the
temperature to ascertain whether the values of certain parameters in the
functions connecting the length increase with the other factors are
dependent on the temperature). In his experiments at constant tempera-
ture, he will vary the factors that he thinks are relevant, one at a time,
keeping the others constant. On the basis of the results thus obtained, he
will tentatively formulate generalizations that express the increase in
length as a function of the unstretched length, of the weight, and so on;
and from there, he may proceed to construct a more general formula
representing the increase in length as a function of all the variables

examined.
In cases of this kind, then, in which experimentation serves as a
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heuristic device, as a guide to the discovery of hypotheses, the principle
of keeping all but one of the “relevant factors” constant makes good
sense. But, of course, the most that can be done is to keep constant all
but one of those factors that are believed to be “relevant” in the sense
of affecting the phenomenon under study: it is always possible that
some other important factors may have been overlooked.

It is one of the striking characteristics, and one of the great meth-
odological advantages, of natural science that many of its hypotheses
admit of experimental test. But experimental testing of hypotheses can-
not be said to be a distinctive characteristic of all and only the natural
sciences. It does not mark a dividing line between natural and social
science, for experimental testing procedures are used also in psychology
and, if to a lesser extent, in sociology. Also, the scope of experimental
testing increases steadily with the advances in the requisite technology.
Moreover, not all hypotheses in the natural sciences permit of experi-
mental test. Take, for example, the law formulated by Leavitt and Shap-
ley for the periodic fluctuations in the brightness of a certain type of
variable star, the so-called classical Cepheids. The law states that the
longer the period P of such a star, i.e, the time interval between two
successive states of maximal brightness, the greater is its intrinsic lumin-
osity; in quantitative terms, M = —(a + b-logP), where M is the
magnitude, which by definition varies inversely with the brightness of the
star. This law deductively implies any number of test sentences stating
what the magnitude of a Cepheid will be if its period has this or that
particular value, for example, 5.3 days or 17.5 days. But Cepheids with
specific periods cannot be produced at will; hence, the law cannot be
tested by experiment. Rather, the astronomer must search the skies for
new Cepheids and must then try to ascertain whether their magnitude
and period conform to the presumptive law.

3.2 Theroleof We said earlier that test implications are “derived” or “inferred”
auxiliary ~ from the hypothesis that is to be tested. This statement, however,
hypotheses  gives only a rough indication of the relationship between a hy-
pothesis and the sentences that serve as its test implications. In

some cases, it is indeed possible deductively to infer from a hypothesis

certain conditional statements that can serve as test sentences for it.

Thus, as we saw, the Leavitt-Shapley law deductively implies sentences

of the form: ‘If star s is a Cepheid with a period of so many days,

then its magnitude will be such and such’. But often the “derivation”

of a test implication is less simple and conclusive. Take, for example,
Semmelweis’ hypothesis that childbed fever is caused by contamination

with infectious matter, and consider the test implication that if the

persons attending the patients were to wash their hands in a solution
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of chlorinated lime, then mortality from childbed fever would be re-
duced. This statement does not follow deductively from the hypothesis
alone; its derivation presupposes the further premiss that unlike soap
and water alone, a chlorinated lime solution will destroy the infectious
matter. This premiss, which is tacitly taken for granted in the argument,
plays the role of what we will call an auxiliary assumption, or auxiliary
hypothesis, in deriving the test sentence from Semmelweis’ hypothesis.
Hence, we are not entitled to assert here that if the hypothesis H is
true then so must be the test implication I, but only that if both H and
the auxiliary hypothesis are true then so will be I. Reliance on auxiliary
hypotheses, as we shall see, is the rule rather than the exception in the
testing of scientific hypotheses; and it has an important consequence for
the question whether an unfavorable test finding, i.e., one that shows
I to be false, can be held to disprove the hypothesis under investigation.

If H alone implies I and if empirical findings show I to be false,
then H must also be qualified as false: this follows by the modus tollens
argument (2a). But when I is derived from H in conjunction with one
or more auxiliary hypotheses A, then the schema (2a) must be replaced
by the following one:

If both H and A are true, then sois I.
3b] But (as the evidence shows) I is not true.

H and A are not both true.

Thus if the test shows I to be false, we can infer only that either the
hypothesis or one of the auxiliary assumptions included in A must be
false; hence, the test provides no conclusive grounds for rejecting H.
For example, if the antiseptic measure introduced by Semmelweis had
not been followed by a decline in mortality, Semmelweis’ hypothesis
might still have been true: the negative test result might have been due
to inefficacy of the chloride of lime solution as an antiseptic.

This kind of situation is not a mere abstract possibility. The astron-
omer Tycho Brahe, whose accurate observations provided the empirical
basis for Kepler's laws of planetary motion, rejected the Copernican con-
ception that the earth moves about the sun. He gave the following rea-
son, among others: if the Copernican hypothesis were true, then the
direction in which a fixed star would be seen by an observer on the earth
at a fixed time of day should gradually change; for in the course of the
annual travel of the earth about the sun, the star would be observed from
a steadily changing vantage point—just as a child on a merry-go-round
observes the face of an onlooker from a changing vantage point and
therefore sees it in a constantly changing direction. More specifically, the
direction from the observer to the star should vary periodically between
two extremes, corresponding to opposite vantage points on the earth’s
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orbit about the sun. The angle subtended by these points is called the
annual parallax of the star; the farther the star is from the earth, the
smaller will be its parallax. Brahe, who made his observations before the
telescope was introduced, searched with his most precise instraments for
evidence of such “parallactic motions” of fixed stars—and found none.
He therefore rejected the hypothesis of the earth’s motion. But the test
implication that the fixed stars show observable parallactic motions can
be derived from Copernicus” hypothesis only with the help of the aux-
iliary assumption that the fixed stars are so close to the earth that their
parallactic movements are large enough to be detected by means of
Brahe’s instruments. Brahe was aware of making this auxiliary assump-
tion, and he believed that he had grounds for regarding it as true; hence
he felt obliged to reject the Copernican conception. It has since been
found that the fixed stars do show parallactic displacements, but that
Brahe's auxiliary hypothesis was mistaken: even the nearest fixed stars
are vastly more remote than he had assumed, and therefore parallax
measurements require powerful telescopes and very precise techniques.
The first generally accepted measurement of a stellar parallax was made
only in 1838.

The significance of auxiliary hypotheses in. testing reaches still
further. Suppose that a hypothesis H is tested by checking a test implica-
tion, ‘If C then E’, which has been derived from H and a set A of aux-
iliary hypotheses. The test then ultimately comes to checking whether
or not E does occur in a test situation in which, to the best of the in-
vestigator’s knowledge, the conditions C are realized. If in fact this is
not the case—if, for example, the test equipment is faulty or not suffi-
ciently sensitive—then E may fail to occur even if both H and A are
true. For this reason, the total set of auxiliary assumptions presupposed
by the test may be said to include the supposition that the test arrange-
ment satisfies the specified conditions C.

This point is particularly important when the hypothesis under
scrutiny has stood up well in previous tests and is an essential part of 2
larger system of interconnected hypotheses that is also supported by
diverse other evidence. In such a case, an effort will likely be made to
account for the nonoccurrence of E by showing that some of the condi-
tions C were not satisfied in the test.

As an example, consider the hypothesis that electric charges have
an atomistic structure and are all of them integral multiples of the charge
of the atom of electricity, the electron. This hypothesis received very
impressive support from experiments conducted by R. A. Millikan in
1909 and later. In these experiments, the electric charges on individual,
extremely small drops of some liquid such as oil or mercury were deter-
mined by measuring the velocities of the droplets while they were falling
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in air under the influence of gravity or rising under the influence of a
counteracting electric field. Millikan found all the charges either to be
equal to, or to be small integral multiples of, a certain basic minimal
charge, which he accordingly identified as the charge of the electron. On
the basis of numerous careful measurements, he gave its value in electro-
static units as 4.774 X 10-1°. This hypothesis was soon challenged by
the physicist Ehrenhaft in Vienna, who announced that he had repeated
Millikan’s experiment and had found charges that were considerably
smaller than the electronic charge specified by Millikan. In his discussion
of Ehrenhaft’s resuits,’ Millikan suggested several likely sources of error
(i.e., violations of test requirements) that might account for Ehrenhaft’s
apparently adverse experimental findings: evaporation during observation,
decreasing the weight of a droplet; formation of an oxide film on the
mercury droplets used in some of Ehrenhaft’s experiments; the disturb-
ing influence of dust particles suspended in the air; the droplet drifting
out of focus of the telescope used to observe it; deviation of very small
droplets from the requisite spherical shape; inevitable errors in timing
the movements of the small particles. In reference to two deviant
particles observed and reported on by another investigator, who had
experimented with oil drops, Millikan concludes: “The only possible
interpretation then which could be put on these two particles . . . was
that . . . they were not spheres of oil”, but dust particles (pp. 170, 169).
Millikan notes further that the results of more precise repetitions of his
own experiment were all in essential accord with the result that he had
announced earlier. Ehrenhaft continued for many years to defend and
further expand his findings concerning subelectronic charges; but other
physicists were not generally able to reproduce his results, and the atom-
istic conception of electric charge was maintained. Millikan’s numerical
value for the electronic charge, however, was later found to be slightly
too small; interestingly, the deviation was traced to an error in one of
Millikan’s own auxiliary hypotheses: he had used too low a value for the
viscosity of air in evaluating his oil drop data!

33 Crucial tests  The preceding remarks are of importance also for the idea of a
crucial test, which can be briefly described as follows: suppose

that H, and H, are two rival hypotheses concerning the same subject

matter, which have so far stood up equally well in empirical tests, so

that the available evidence does not favor one of them over the other.

Then a decision between the two may be reached if some test can be

specified for which H, and H, predict conflicting outcomes; i.e,, if for

a certain kind of test condition, C, the first hypothesis yields the test

1See Chap. VIII of R. A. Millikan, The Electron (Chic%%o: The University of
Chicago Press, 1917). Reprinted, with an introduction by J.W.M. DuMond, 1963.
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implication ‘If C then E,’, and the second hypothesis yields ‘If C then
E,’, where E, and E, are mutually exclusive outcomes. Performance of
the appropriate test will then presumably refute one of the hypotheses
and support the other.

A classical example is the experiment performed by Foucault to
decide between two competing conceptions of the nature of light. One
of these, proposed by Huyghens and developed further by Fresnel and
Young, held that light consists in transverse waves propagated in an
elastic medium, the ether; the other was Newton’s corpuscular concep-
tion, according to which light consists of extremely small particles travel-
ing at high velocity. Either of these conceptions permitted the conclusion
that light “rays” should conform to the laws of rectilinear propagation,
reflection, and refraction. But the wave conception led to the further
implication that light should travel faster in air than in water, whereas
the corpuscular conception led to the opposite conclusion. In 1850,
Foucault succeeded in performing an experiment in which the velocities
of light in air and in water were directly compared. Images of two light-
emitting points were produced by means of light rays that passed through
water and through air, respectively, and were then reflected in a very
rapidly revolving mirror. Depending on whether the velocity of light in
air was greater or less than that in water, the image of the first light
source would appear to the right or to the left of that of the second
light source. The conflicting test implications checked by this experiment
may therefore be briefly put as follows: ‘if the Foucault experiment is
performed, then the first image will appear to the right of the second
image’ and ‘if the Foucault experiment is performed, then the first image
will appear to the left of the second image’. The experiment showed
the first of these implications to be true.

This outcome was widely regarded as a definitive refutation of the
corpuscular conception of light and as a decisive vindication of the
undulatory one. But this appraisal, though very natural, overrated the
force of the test. For the statement that light travels faster in water than
in air does not follow simply from the general conception of light rays
as streams of particles; that assumption alone is much too indefinite to
yield any specific quantitative consequences. Such implications as the
laws of reflection and refraction and the statement about the velocities
of light in air and in water can be derived only when the general cor-
puscular conception is supplemented by specific assumptions concerning
the motion of the corpuscles and the influence exerted upon them by
the surrounding medium. Newton did specify such assumptions; and in
so doing, he set forth a definite theory * concerning the propagation of
light. It is the total set of those basic theoretical principles that leads

3 The form and function of theories will be further examined in Chap. 6.
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to experimentally testable consequences such as the one checked by
Foucault. Analogously, the wave conception was formulated as a theory
based on a set of specific assumptions about the propagation of ether
waves in different optical media; and again it is this set of theoretical
principles that implied the laws of reflection and refraction and the
statement that the velocity of light is greater in air than in water. Con-
sequently—granting the truth of all other auxiliary hypotheses—the out-
come of Foucault’s experiment entitles us to infer only that not all the
basic assumptions, or principles, of the corpuscular theory can be true—
that at least one of them must be false. But it does not tell us which of
them is to be rejected. Hence, it leaves open the possibility that the
general conception of particle-like projectiles playing a role in the propa-
~ gation of light might be retained in some modified form which would
be characterized by a different set of basic laws.

And in fact, in 1905, Einstein did propound a modified version of
the corpuscular conception in his theory of light quanta or photons, as
they came to be called. The evidence he cited in support of his theory
included an experiment performed by Lenard in 1903. Einstein charac-
terized it as a “second crucial experiment” concerning the undulatory
and corpuscular conceptions, and he noted that it “eliminated” the
classical wave theory, in which by then the notion of elastic vibrations
in the ether had been replaced by the idea, developed by Maxwell and
Hertz, of transverse electromagnetic waves. Lenard’s experiment, involv-
ing the photoelectric effect, could be regarded as testing two conflicting
implications concerning the light energy that a radiating point P can
transmit, during some fixed unit of time, to a small screen that is per-
pendicular to the light rays. On the classical wave theory, that energy
will gradually and continuously decrease toward zero as the screen moves
away from the point P; on the photon theory, the energy must be at
least that carried by a single photon—unless during the given time inter-
val, no photon strikes the screen, in which case the energy received will
be zero; hence, there will be no continuous decrease to zero. Lenard’s
experiment had borne out this latter alternative. Again, however, the
wave conception was not definitely refuted; the outcome of the experi-
ment showed only that some modification was needed in the system of
basic assumptions of the wave theory. Einstein, in fact, endeavored to
modify the classical theory as little as possible.? In sum, then, an experi-
ment of the kind here illustrated cannot strictly refute one of the two
rival hypotheses.

But neither can it “prove” or definitively establish the other; for
as was noted generally in section 2.2, scientific hypotheses or theories can-

3 This example is discussed at some length in Chap. 8 of P. Frank, Philosophy of
Science (Englewood Cliffs, N.J.: Prentice-Hall, Spectrum Books, 1962).
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not be conclusively proved by any set of available data, no matter how
accurate and extensive. This is particularly obvious for hypotheses or
theories that assert or imply general laws either for some process that
is not directly observable—as in the case of the rival theories of light—
or for some phenomenon more readily accessible to observation and
measurement, such as free fall. Galileo’s law, for example, refers to all
instances of free fall in the past, present, and future; whereas all the
relevant evidence available at any time can cover only that relatively
small set of cases—all of them belonging to the past—in which careful
measurements have been carried out. And even if Galileo’s law were
found to be strictly satisfied in all the observed cases, this would obvi-
ously not preclude the possibility that some unobserved cases in past or
future may not conform to it. In sum, even the most careful and exten-
sive test can neither disprove one of two hypotheses nor prove the other:
thus strictly construed, a crucial experiment is impossible in science.*
But an experiment, such as Foucault’s or Lenard’s, may be crucial in
a less strict, practical sense: it may reveal one of two conflicting theories
as seriously inadequate and may lend strong support to its rival; and as
a result, it may exert a decisive influence upon the direction of sub-
sequent theorizing and experimentation.

3.4 Ad hoc If a particular way of testing a hypothesis H presupposes auxiliary
hypotheses assumptions A,, A,, . .., As—ie, if these are used as additional
premisses in deriving from H the relevant test implication I—then,

as we saw earlier, a negative test result, which shows I to be false, tells

us only that H or one of the auxiliary hypotheses must be false and

that a change must be made somewhere in this set of sentences if the

test result is to be accommodated. A suitable adjustment might be made

by modifying or completely abandoning H or by making changes in the

system of auxiliary hypotheses. In principle, it would always be possible

to retain H even in the face of seriously adverse test results—provided

that we are willing to make sufficiently radical and perhaps burdensome

revisions among our auxiliary hypotheses. But science is not interested in

thus protecting its hypotheses or theories at all costs—and for good rea-

sons. Consider an example. Before Torricelli introduced his conception

of the pressure of the sea of air, the action of suction pumps was ex-

plained by the idea that nature abhors a vacuum and that, therefore,

water rushes up the pump barrel to fill the vacuum created by the rising

¢This is the famous verdict of the French physicist and historian of science,
Pierre Duhem. Cf. Part II, Chap. VI of his book, The Aim and Structure of Physical
Theory, trans. P. P, Wiener (Princeton: Princeton University Press, 1954), orig-
inally published in 1905. In his Foreword to the English translation, Louis de
Broglie includes some interesting observations on this idea. :

28



3 The Test of a Hypothesis:Its Logic and Its Force 219

piston. The same idea also served to explain several other phenomena.
When Pascal wrote to Périer asking him to perform the Puy-de-Dbme
experiment, he argued that the expected outcome would be a “decisive”
refutation of that conception: “If it happens that the height of the
quicksilver is less at the top than at the base of the mountain . . . it
follows of necessity that the weight and pressure of the air is the sole
cause of this suspension of the quicksilver, and not the abhorrence of a
vacuum: for it is quite certain that there is much more air that presses
on the foot of the mountain than there is on its summit, and one cannot
well say that nature abhors a vacuum more at the foot of the mountain
than at its summit.” ® But the last remark actually indicates a way in
which the conception of a horror vacui could be saved in the face of
Périer’s findings. Périer’s results are decisive evidence against that con-
ception only on the auxiliary assumption that the strength of the horror
does not depend upon location. To reconcile Périer’s apparently adverse
evidence with the idea of a horror vacui it suffices to introduce instead
the auxiliary hypothesis that nature’s abhorrence of a vacuum decreases
with increasing altitude. But while this assumption is not logically absurd
or patently false, it is objectionable from the point of view of science.
For it would be introduced ad hoc—i.e., for the sole purpose of saving
a hypothesis seriously threatened by adverse evidence; it would not be
called for by other findings and, roughly speaking, it leads to no addi-
tional test implications. The hypothesis of the pressure of air, on the
other hand, does lead to further implications. Pascal mentions, for
example, that if a partly inflated balloon were carried up a mountain,
it would be more inflated at the mountaintop.

About the middle of the seventeenth century, a group of physlcxsts
the plenists, held that a vacuum could not exist in nature; and in order
to save this idea in the face of Torricelli's experiment, one of them
offered the ad hoc hypothesis that the mercury in a barometer was being
held in place by the “funiculus”, an invisible thread by which it was
suspended from the top of the inner surface of the glass tube. According
to an initially very useful theory, developed early in the eighteenth cen-
tury, the combustion of metals involves the escape of a substance called
phlogiston. This conception was eventually abandoned in response to
the experimental work of Lavoisier, who showed that the end product
of the combustion process has greater weight than the original metal.
But some tenacious adherents of the phlogiston theory tried to reconcile
their conception with Lavoisier’s finding by proposing the ad hoc hypoth-

S From Pascal’s letter of November 15, 1647 in LH.B. and A.G.H. Spiers, trans.,
The Physical Treatises of Pascal (New York: Columbia University Press, 1937),
p. 101.

29



220 Philosophy of Natural Science

esis that phlogiston had negative weight, so that its escape would increase
the weight of the residue.

We should remember, however, that with the benefit of hindsight,
it seems easy to dismiss certain scientific suggestions of the past as ad hoc
hypotheses, whereas it may be quite difficult to pass judgment on a
hypothesis proposed in a contemporary context. There is, in fact, no
precise criterion for ad hoc hypotheses, though the questions suggested
earlier provide some guidance: is the hypothesis proposed just for the
purpose of saving some current conception against adverse evidence, or
does it also account for other phenomena, does it yield further significant
test implications? And one further relevant consideration is this: if more
and more qualifying hypotheses have to be introduced to reconcile a
certain basic conception with new evidence that becomes available, the
resulting total system will eventually become so complex that it has to
give way when a simple alternative conception is proposed.

3.5 Testability-in- As the preceding discussion shows, no statement or set of state-
principleand ments T can be significantly proposed as a scientific hypothesis or
empirical theory unless it is amenable to objective empirical test, at least
import “in principle”. This is to say that it must be possible to derive
from T, in the broad sense we have considered, certain test implica-
tions of the form ‘if test conditions C are realized, then outcome E
will occur’; but the test conditions need not be realized or technologi-
cally realizable at the time when T is propounded or contemplated. Take
the hypothesis, for example, that the distance covered in t seconds by
a body falling freely from rest near the surface of the moon is s = 2.7 1
feet. It yields deductively a set of test implications to the effect that the
distances covered by such a body in 1, 2, 3, . . . seconds will be 2.7, 10.8,
243, . . . feet. Hence, the hypothesis is testable in principle, though it

is as yet impossible to perform the test here specified.

But if a statement or set of statements is not testable at least in
principle, in other words, if it has no test implications at all, then it
cannot be significantly proposed or entertained as a scientific hypothesis
or theory, for no conceivable empirical finding can then accord or conflict
with it. In this case, it has no bearing whatever on empirical phenomena,
or as we will also say, it lacks empirical import. Consider, for example,
the view that the mutual gravitational attraction of physical bodies is a
manifestation of certain “appetites or natural tendencies” closely related
to love, inherent in those bodies, which make their “natural movements
intelligible and possible”.® What test implications can be derived from
this interpretation of gravitational phenomena? Considering some char-

¢ This idea is set forth, for example, in J. F. O'Brien, “‘Gravity and Love as Unify-
ing Principles,” The Thomist, Vol. 21 (1958), 184-93.
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acteristic aspects of love in the familiar sense, this view would seem to
imply that gravitational affinity should be a selective phenomenon: not
just any two physical bodies should attract each other. Nor should the
strength of the affinity of one body to a second one always equal that
of its converse, nor should it depend significantly on the masses of the
bodies or on their distance. But since all of the consequences thus sug-
gested are known to be false, the conception we are considering evidently
is not meant to imply them. And indeed, that conception claims merely
that the natural affinities underlying gravitational attraction are related
to love. But, as will now be clear, this assertion is so elusive that it pre-
cludes the derivation of any test implications. No specific empirical find-
ings of any kind are called for by this interpretation; no conceivable
observational or experimental data can confirm or disconfirm it. In par-
ticular, therefore, it has no implications concerning gravitational phe-
nomena; consequently, it cannot possibly explain those phenomena or
render them “intelligible”. To illustrate this further, let us suppose
someone were to offer the alternative thesis that physical bodies gravita-
tionally attract each other and tend to move toward each other from
a natural tendency akin to hatred, from a natural inclination to collide
with and destroy other physical objects. Would there be any conceivable
way of adjudicating these conflicting views? Clearly not. Neither of them
yields any testable implications; no empirical discrimination between
them is possible. Not that the issue is “too deep” for scientific de-
cision: the two verbally conflicting interpretations make no assertions at
all. Hence, the question whether they are true or false makes no sense,
and that is why scientific inquiry cannot possibly decide between them.
They are pseudo-hypotheses: hypotheses in appearance only.

It should be borne in mind, however, that a scientific hypothesis
normally yields test implications only when combined with suitable aux-
iliary assumptions. Thus, Torricelli's conception of the pressure exerted
by the sea of air yields definite test implications only on the assumption
that air pressure is subject to laws analogous to those for water pressure;
this assumption underlies, for example, the Puy-de-Ddme experiment. In
judging whether a proposed hypothesis does have empirical import, we
should ask ourselves, therefore, what auxiliary hypotheses are explicitly
or tacitly presupposed in the given context, and whether in conjunction
with the latter, the given hypothesis yields test implications (other than
those that may be derivable from the auxiliary assumptions alone).

Moreover, a scientific idea will often be introduced in an initial
form that offers only limited and tenuous possibilities for test; and on
the basis of such initial tests it will gradually be given a more definite,
precise, and diversely testable form,

For these reasons, and for certain others which would lead us too
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far afield,” it is not possible to draw a sharp dividing line between
hypotheses and theories that are testable in principle and those that are
not. But even though it is somewhat vague, the distinction here referred
to is important and illuminating for appraising the significance and the
potential explanatory efficacy of proposed hypotheses and theories.

¥ The issue is discussed further in another volume of this series: William Alston,
Philosophy of Language, Chap. 4. A fuller, technical discussion will be found in the

essay, “‘Empiricist Criteria of Cognitive Significance: Problems and Changes,” in
C. é Hempe), Aspects of Scientihc Explanation (New York: The Free Press, 1965).
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CRITERIA OF CONFIRMATION

AND ACCEPTABILITY

As we noted eatlier, a favorable outcome of even very extensive and
exacting tests cannot provide conclusive proof for a hypothesis, but only
more or less strong evidential support, or confirmation. How strongly a
hypothesis is supported by a given body of evidence depends on various
characteristics of the evidence, which we will consider presently. In ap-
praising what might be called the scientific acceptability or credibility
of a hypothesis, one of the most important factors to consider is, of
course, the extent and the character of the relevant evidence available
and the resulting strength of the support it gives to the hypothesis. But
several other factors have to be taken into account as well; these, too,
will be surveyed in this chapter. We shall at first speak in a somewhat
intuitive manner of more or less strong support, of small or large incre-
ments in confirmation, of factors that increase or decrease the credibility
of a hypothesis, and the like. At the end of the chapter, we will
briefly consider whether the concepts here referred to admit of a precise
quantitative construal.

4.1 Quantity, In the absence of unfavorable evidence, the confirmation of a
hypothesis will normally be regarded as increasing with the number
of favorable test findings. For example, each new Cepheid variable
whose period and luminosity are found to conform to the Leavitt-
Shapley law will be considered as adding to the evidential support
of the law. But broadly speaking, the increase in confirmation
effected by one new favorable instance will generally become smaller as
the number of previously established favorable instances grows. If thou-

variety, and
precision of
supporting
evidence
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sands of confirmatory cases are already available, the addition of one
more favorable finding will raise the confirmation but little.

This remark must be qualified, however. If the earlier cases have
all been obtained by tests of the same kind, but the new finding is the
result of a different kind of test, the confirmation of the hypothesis may
be significantly enhanced. For the confirmation of a hypothesis depends
not only on the quantity of the favorable evidence available, but also on
its variety: the greater the variety, the stronger the resulting support.

Suppose, for example, that the hypothesis under consideration is
Snell’s law, which states that a ray of light traveling obliquely from one
optical medium into another is refracted at the separating surface in
such a way that the ratio, sin a /sin B8, of the sines of the angles of
incidence and of refraction is a constant for any pair of media. Compare
now three sets of 100 tests each. In the first set, the media and the angle
of incidence are kept constant: in each experiment, the ray passes from
air into water at an angle of incidence of 30°; the angle of refraction is
measured. Suppose that in all cases, sin a /sin 8 does have the same
value. In the second set, the media are kept constant, but the angle
is varied: light passes from air into water at varying angles; 8 is measured.
Again, suppose that sin a /sin 8 has the same value in all cases. In the
third set, both the media and the angle a are varied: 25 different pairs
of media are examined: for each pair, four different angles a are used.
Suppose that for each pair of media, the four associated values of the
ratio sin a /sin B8 are equal, while the ratios associated with different
pairs have different values.

Each test set then presents a class of favorable outcomes, since
the ratios associated with any particular pair of media are found to be
equal, as implied by Snell's law. But the third set, which offers the
greatest variety of positive instances, will surely be regarded as support-
ing the law much more strongly than the second, which provides sup-
porting instances of much more limited variety; and the first set, it will
be agreed, lends even less strong support to the general law. In fact, it
might seem that in the first set, the same experiment is performed over
and over again, and that the positive outcome in all 100 cases can sup-
port the hypothesis no more strongly than do the first two tests in the
set, which bear out the constancy of the ratio. But this idea is mistaken.
What is repeated here 100 times is not literally the same experiment, for
the successive performances differ in many respects, such as the distance
of the apparatus from the moon, perhaps the temperature of the light
source, the atmospheric pressure, and so on. What is “kept the same”
is simply a certain set of conditions, including a fixed angle of incidence
and one particular pair of media. And even if the first two or more
measurements under these circumstances yield the same value for
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sin a /sin B, it is logically quite possible that subsequent tests under the
specified circumstances should yield different values for the ratio. Thus
even here, repeated tests with favorable outcome add to the confirmation
of the hypothesis—though much less so than do tests that cover a wider
variety of instances.

We might recall here that Semmelweis was able to point to a
considerable variety of facts that lent evidential support to his final
hypothesis. Scientific theories are often supported by empirical findings
of amazing variety. Newton’s theory of gravitation and of motion implies,
for example, the laws for free fall, for the simple pendulum, for the
motion of the moon about the earth and of the planets about the sun,
for the orbits of comets and of man-made satellites, for the motion of
double stars about each other, for tidal phenomena, and many more.
And all the diverse experimental and observational findings that bear
out those laws lend support to Newton’s theory.

The reason why diversity of evidence is so important a factor in
the confirmation of a hypothesis might be suggested by the following
consideration, which refers to our example of various tests for Snell’s
law. The hypothesis under test—let us call it S for short—refers to all
pairs of optical media and asserts that for any pair, the ratio sin a /sin 8
has the same value for all associated angles of incidence and of refrac-
tion. Now, the more widely a set of experiments ranges over the diverse
possibilities here covered, the greater will be the chances of finding an
unfavorable instance if S should be false. Thus, the first set of experi-
ments may be said to test more specifically a hypothesis S, that expresses
only a small part of Snell's law—namely, that sin a /sin 8 has the same
value whenever the optical media are air and water and a is 30°. Hence,
if S, should be true, but S false, the first kind of test will never disclose
this. Similarly, the second set of experiments tests a hypothesis S,, which
asserts distinctly more than S, but still not nearly as much as S—namely,
that sin a /sin 8 has the same value for all angles e and the associated
angles 8 if the media involved are air and water. Hence, if S, should
be true, but S false, a test set of the second kind would never disclose
this. Thus, the third set of experiments might be said to test Snell’s law
more thoroughly than the other two; an entirely favorable outcome ac-
cordingly lends stronger support to it.

As an additional illustration of the power of diversified evidence,
we might note that if the diversity of the evidence is still further in-
creased by varying the temperature of the optical media or by using
monochromatic light of different wave lengths, then Snell’s law in the
classical form cited above is in fact found to be false.

But have we not overstated the case for diversified evidence? After
all, some ways of increasing variety would be regarded as pointless, as in-
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capable of raising the confirmation of a hypothesis. This verdict would
apply, for example, if in our first test set for Snell’s law the variety were
increased by having the experiment performed at different places, dur-
ing different phases of the moon, or by experimenters with different
eye color. But to try such variations would not be unreasonable if as yet
we had no knowledge, or only extremely limited knowledge, of what
factors are likely to affect optical phenomena. At the time of the Puy-de-
Déme experiment, for example, the experimenters had no very definite
ideas of what factors other than altitude might affect the length of the
mercury column in the barometer; and when Pascal’s brother-in-law and
‘his associates performed the Tormicelli experiment on the mountaintop
and found the mercury column over three inches shorter than it had
been at the foot of the mountain, they decided to repeat the experiment
then and there, changing the circumstances in various ways. As Périer
says in his report: “I therefore tried the same thing five times more,
with great accuracy, at different places on the top of the mountain, once
under cover in the little chapel which is there, once exposed, once in a
shelter, once in the wind, once in good weather, and once during the
rain and the mists which came over us sometimes, having taken care to
get rid of the air in the tube every time; and in all these trials there
was found the same height of the quicksilver . . . ; this result fully
satisfied us.” !

Thus, the qualification of certain ways of varying the evidence as
important and of other ways as pointless is based on the background
assumptions we entertain—perhaps as a result of previous research—
concerning the probable influence of the factors to be varied upon the
phenomenon with which the hypothesis is concerned.

And sometimes when such background assumptions are questioned
and experimental variations are accordingly introduced which, on the
generally accepted view, are pointless, a revolutionary discovery may be
the outcome. This is illustrated by the recent overthrow of one of the
basic background assumptions of physics, the principle of parity. Accord-
ing to this principle, the laws of nature are impartial between right and
left; if a certain kind of physical process is possible (i.e., if its occurrence
is not precluded by the laws of nature), then so is its mirror image
(the process as seen in a reflecting mirror), where right and left are
interchanged. In 1956, Yang and Lee, who were trying to account for
some puzzling experimental findings concerning elementary particles,
suggested that the principle of parity is violated in certain cases; and their
bold hypothesis soon received clear experimental confirmation.

Sometimes, a test can be made more stringent, and its result the
more weighty, by increasing the precision of the procedures of observa-

1'W. F. Magie, ed., A Source Book in Physics, p. 74.
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tion and measurement it involves. Thus, the hypothesis of the identity
of inertial and gravitational mass—supported, for example, by the
equality of the accelerations shown in free fall by bodies of different
chemical constitution—has recently been re-examined with extremely
precise methods; and the results, which have so far borne out the
hypothesis, have greatly strengthened its confirmation.

4.2 Confirmation When a hypothesis is designed to explain certain observed phe-
by''new"test nomena, it will of course be so constructed that it implies their
implications occurrence; hence, the fact to be explained will then constitute

confirmatory evidence for it. But it is highly desirable for a scientific
hypothesis to be confirmed also by “new” evidence—by facts that were
not known or not taken into account when the hypothesis was form-
ulated. Many hypotheses and theories in natural science have indeed
received support from such “new” phenomena, with the result that
their confirmation was considerably strengthened.

The point is well illustrated by an example that dates back to the
last quarter of the nineteenth century, when physicists were searching
for inherent regularities in the profusion of lines that had been found in
the emission and absorption spectra of gases. In 1885, a Swiss school
teacher, J. J. Balmer, proposed a formula that he thought expressed such
a regularity for the wavelengths of a series of lines in the emission
spectrum of hydrogen. On the basis of measurements that Angstrém
had made of four lines in that spectrum, Balmer constructed the follow-
ing general formula:

n?
ns—28

Here, b is a constant, whose value Balmer determined empirically as
3645.6 A, and n is an integer greater than 2. For n = 3, 4, 5, and 6, this
formula yields values that agree very closely with those measured by
Angstrom; but Balmer was confident that the other values, too, would
represent wavelengths of lines yet to be measured—or even yet to be
found—in the hydrogen spectrum. He was unaware that some further
lines had already been noted and measured. By now, 35 consecutive
lines in the so-called Balmer series for hydrogen have been ascertained,
and all of these have wavelengths that agree well with the values pre-
dicted by Balmer’s formula.?

It is hardly surprising that such striking confirmation by correctly
predicted “new” facts greatly enhances the credence we will be prepared

A:b

3 A full and lucid account, on which this brief survey is based, will be fouqd in
Chap. 33 of G. Holton and D.H.D. Roller, Foundations of Modern Physical Science
(Reading, Mass.: Addison-Wesley Publishing Co., 1958).
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to give to a hypothesis. A puzzling question arises in this context. Sup-
pose for 2 moment that Balmer’s formula had been constructed only
after all the 35 lines now recorded in the series had been carefully
measured. In this fictitious case, then, exactly the same experimental
findings would be available that have in fact been obtained by measure-
ments made in part before, and in much larger part after, the construc-
tions of the formula. Should that formula be considered as less well
confirmed in the fictitious case than in the actual one? It might seem
reasonable to answer in the affirmative, on these grounds: for any given
set of quantitative data, it is possible to construct a hypothesis that covers
them, just as for any finite set of points, it is possible to draw a
smooth curve that contains them all. Thus, there would be nothing very
surprising about the construction of Balmer’s formula in our fictitious
case. What is remarkable, and does lend weight to a hypothesis, is its
fitting “new” cases: and Balmer's hypothesis has this accomplishment
to its credit in the actual case, but not in the fictitious one. But this
argument could be met with the reply that even in the fictitious case,
Balmer's formula is not just some otherwise arbitrary hypothesis that is
rigged to fit the 35 measured wavelengths: it is, rather, a hypothesis of
striking formal simplicity; and the very fact that it subsumes those 35
wavelengths under a mathematically simple formula should lend it much
higher credibility than could be accorded to a very complex formula
fitting the same data. To state the idea in geometrical terms: if a set
of points representing the results of measurements can be connected by
a simple curve, we have much greater confidence in having discovered
an underlying general law than if the curve is complicated and shows
no perceptible regularity. (This notion of simplicity will be further con-
sidered, later on in this chapter.) Besides, from a logical point of view,
the strength of the support that a hypothesis receives from a given body
of data should depend only on what the hypothesis asserts and what
the data are: the question of whether the hypothesis or the data were
presented first, being a purely historical matter, should not count as
affecting the confirmation of the hypothesis. This latter conception is
certainly implicit in recently developed statistical theories of testing and
also in some contemporary logical analyses of confirmation and induc-
tion, to which brief reference will be made at the end of this chapter.

4.3 Theoretical  The support that may be claimed for a hypothesis need not all be
support  of the inductive-evidential kind that we have considered so far:

it need not consist entirely—or even partly—of data that bear out

test implications derived from it. Support may also come “from above”;

that is, from more inclusive hypotheses or theories that imply the given

one and have independent evidential support. To illustrate: we con-
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sidered earlier a hypothetical law for free fall on the moon, s = 2.7 t2,
Although none of its test implications have ever been checked by experi-
ments on the moon, it has strong theoretical support, for it follows
deductively from Newton’s theory of gravitation and of motion (strongly
supported by a highly diversified body of evidence) in conjunction with
the information that the radius and the mass of the moon are .272 and
0123 of those of the earth and that the gravitational acceleration near
the surface of the earth is 32.2 feet per second per second.

Similarly, the confirmation of a hypothesis that does have inductive-
evidential support will be further strengthened if, in addition, it acquires
deductive support from above. This happened, for example, to Balmer’s
formula. Balmer had anticipated the possibility that the hydrogen spec-
trum might contain further series of lines, and that the wavelengths of
all the lines might conform to a generalization of his formula; namely,

n?

A= b nd —md

Here, m is a positive integer, and n is any integer greater than m. For
m = 2, this generalization yields Balmer’s formula; whereas m = 1, 3,
4, . . . determine new series of lines. And indeed, the existence of the
series corresponding to m = 1, 3, 4, and 5 was later established by experi-
mental exploration of the invisible infrared and ultraviolet parts of the
hydrogen spectrum. Thus, there was strong evidential support for a more
general hypothesis that implied Balmer’s original formula as a special
case, thus providing deductive support for it. And deductive support by
a theory came in 1913, when the generalized formula—hence Balmer’s
original one, also—were shown by Bohr to be derivable from his theory
of the hydrogen atom. This derivation greatly strengthened the support
of Balmer's formula by fitting it into the context of quantum-theoretical
conceptions developed by Planck, Einstein, and Bohr, which were sup-
ported by diverse evidence other than the spectroscopic measurements
that lent inductive support to Balmer’s formula.?

Correlatively, the credibility of a hypothesis will be adversely
affected if it conflicts with hypotheses or theories that are accepted at the
time as well-confirmed. In the New York Medical Record for 1877, a
Dr. Caldwell of Iowa, reporting on an exhumation he claims to have
witnessed, asserts that the hair and the beard of a man who had been
buried clean-shaven, had burst the coffin and grown through the cracks.*
Although presented by a presumptive eyewitness, this statement will be

3For details, see Holton and Roller, Foundations of Modern Physical Science,

Chap. 34 (especially section 7).
4 g Evans, The Natural History of Nonsense (New York: Alfred A. Knopf, 1946),

p. 133.
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rejected without much hesitation because it conflicts with well-established
findings about the extent to which human hair continues to grow after
death,

Our earlier discussion of Ehrenhaft’s claim to have experimentally
established the existence of subelectronic charges similarly illustrates the
point that conflict with a broadly supported theory militates against a
hypothesis.

The principle here referred to must be applied with discretion and
restraint, however. Otherwise, it could be used to protect any accepted
theory against overthrow: adverse findings could always be dismissed as
conflicting with a well-established theory. Science does not, of course,
follow this procedure; it is not interested in defending certain pet con-
ceptions against all possible adverse evidence. It aims, rather, at a com-
prehensive body of sound empirical knowledge, represented by a well-
confirmed system of empirical statements, and it is accordingly prepared
to give up or to modify whatever hypotheses it may have previously
accepted. But findings that are to dislodge a well-established theory have
to be weighty; and adverse experimental results, in particular, have to
be repeatable. Even when a strong and useful theory has been found
to conflict with an experimentally reproducible “effect”, it may still con-
tinue to be used in contexts where it is not expected to lead into
difficulties. For example, when Einstein propounded the theory of light
quanta to account for such phenomena as the photoelectric effect, he

- noted that in dealing with the reflection, refraction, and polarization
of light, the electromagnetic wave theory would probably never be
replaced; and it is indeed still used in this context. A largescale
theory that has been successful in many areas will normally be aban-
doned only when a more satisfactory alternative theory is available—and
good theories are difficult to come by.?

4.4 Simplicity  Another aspect that affects the aceeptability of a hypothesis is its
simplicity, compared with that of alternative hypotheses that would
account for the same phenomena.

Consider a schematic illustration. Suppose that investigation of
physical systems of a certain type (Cepheids, elastic metal springs, vis-
cous liquids, or whatever) suggests to us that a certain quantitative
characteristic, v, of such systems, might be a function of, and thus
uniquely determined by, another such characteristic, u (in the way in

5 This point is suggestively presented and illustrated by reference to the phlogiston
theory of combustion in Chap. 7 of J. B. Conant, Science and Common Sense. A
provocative general conception of the rise and fall of scientific theories is devek{?ed
in T. S. Kuhn's book The Structure of Scientific Revolutions (Chicago: The Uni-
versity of Chicago Press, 1962).
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which the period of a pendulum is a function of its length). We there-
fore try to construct a hypothesis stating the exact mathematical form
of the function. We have been able to check many instances in which.u
had one of the values 0, 1, 2, or 3; the associated values of v were regu-
larly found to be 2, 3, 4, and 5, respectively. Suppose further that con-
cerning these systems, we have no background knowledge that might
bear on the likely form of the functional connection, and that the fol-
lowing three hypotheses have been proposed on the basis of our data:

Hy: v=ut—6u®+ 11u® — S5u + 2
Hy: v=u®—4ut—u®+ 16u® — 1lu + 2
Hg: v=u+2

Each of these fits the data: to each of the four u-values examined,
it assigns exactly the v-value that has been found associated with it.
In geometrical terms: if the three hypotheses are graphed in a plane
coordinate system, then each of the resulting curves contains the four
data-points (0,2), (1,3), (2,4), and (3,5).

Yet if, as has been assumed, we have no relevant background in-
formation that might indicate a different choice, we would no doubt
favor H, over H, and H, on the ground that it is a simpler hypothesis
than its rivals. This consideration suggests that if two hypotheses accord
with the same data and do not differ in other respects relevant to their
confirmation, the simpler one will count as more acceptable.

The relevance of the same basic idea to entire theories is often
illustrated by reference to the Copernican heliocentric conception of the
solar system, which was considerably simpler than the geocentric one it
came to supersede, namely, Ptolemy’s ingenious and accurate, but “gor-
geously complicated system of main circles and sub-circles, with different
radii, speeds, tilts, and different amounts and directions of eccentricity.”®

Though, undeniably, simplicity is highly prized in science, it is not
easy to state clear criteria of simplicity in the relevant sense and to justify
the preference given to simpler hypotheses and theories.

Any criteria of simplicity would have to be objective, of course; they
could not just refer to intuitive appeal or to the ease with which a
hypothesis or theory can be understood or remembered, etc., for these
factors vary from person to person. In the case of quantitative hypotheses
like H,, H,, H,, one might think of judging simplicity by reference to
the corresponding graphs. In rectangular coordinates, the graph of H, is

SE. Rogers, Physics for the Inquiring Mind (Princeton: Princeton University
Press, 1960), p. 240. Chapters 14 and 16 of this work offer a splendid description
and appraisal of the two systems; they give more substance to the claim of greater

simplicity for Copemicus’ scheme, but show also that it was able to account for
various facts, known at Copemicus’ time, that the Ptolemaic system could not

explain.
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a straight line, whereas graphs of H, and H, are much more complicated
curves through the four data-points. But this criterion seems arbitary.
For if the hypotheses are represented in polar coordinates, with u as the
direction angle and v as the radius vector, then H; determines a spiral,
whereas a function determining a “simple” straight line would be quite
complicated.

When, as in our example, all the functions are expressed by poly-
nomials, the order of the polynomial might serve as an index of complex-
ity; thus H, would be more complex than H,, which in turn would be
more complex than H,. But further criteria are needed when trigo-
nometric and other functions are to be considered as well.

In the case of theories, the number of independent basic assump-
tions is sometimes suggested as an indicator of complexity. But as-
sumptions can be combined and split up in many ways: there is no
unambiguous way of counting them, For example, the statement that
for any two points there is exactly one straight line containing them
might be counted as expressing two assumptions rather than one: that
there is at least one such line, and that there is at most one. And even
if we could agree on the count, different basic assumptions might in turn
differ in complexity and would then have to be weighed rather than
counted. Similar remarks apply to the suggestion that the number of
basic concepts used in a theory might serve as an index of its complexity.
The question of criteria of simplicity has in recent years received a good
deal of attention from logicians and philosophers, and some interesting
results have been obtained, but no satisfactory general characterization
of simplicity is available. As our examples suggest, however, there cer-
tainly are cases in which, even in the absence of explicit criteria, investi-
gators would be in substantial agreement about which of two competing
hypotheses or theories is the simpler.

Another intriguing problem concerning simplicity is that of justifi-
cation: what reasons are there for following the principle of simplicity,
as we might call it; that is, the maxim that the simpler of two otherwise
equally confirmed rival hypotheses or theories is to be preferred, is to
count as more acceptable?

Many great scientists have expressed the conviction that the basic
laws of nature-are simple. If this were known, there would indeed be a
presumption that the simpler of two rival hypotheses is more likely to be
true. But the assumption that the basic laws of nature are simple is of
course at least as problematic as the soundness of the principle of sim-
plicity and thus cannot provide a justification for it.

Some scientists and philosophers—among them Mach, Avenarius,
Ostwald, and Pearson—have held that science secks to give an economic
or parsimonious description of the world, and that general hypotheses
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purporting to express laws of nature are economic expedients for thought,
serving to compress an indefinite number of particular cases (e.g., many
cases of free fall) into one simple formula (e.g., Galileo’s law); and
from this point of view, it seems entirely reasonable to adopt the simplest
among several competing hypotheses. This argument would be convinc-
ing if we had to choose between different descriptions of one and the
same set of facts; but in adopting one among several competing hypoth-
eses, such as H,, H,, H, above, we also adopt the predictions it implies
concerning as yet untested cases; and in this respect, the hypotheses
differ widely. Thus, for u = 4, H,, H,, and H, predict the v-values 150,
30, and 6, respectively. Now, H, may be mathematically simpler than its
rivals; but what grounds are there for considering it more likely to be
true, for basing our expectations concerning the as yet unexamined case
u = 4 on H; rather than on one of the competing hypotheses, which fit
the given data with the same precision?

One interesting answer has been suggested by Reichenbach.
Briefly, he argues as follows: suppose that in our example v is indeed a
function of u, v = f(u). Let g be its graph in some system of coordinates;
the choice is inessential. The true function f and its graph are, of course,
unknown to the scientist who measures associated values of the two varia-
bles. Assumning, for the sake of the argument, that his measurements are
exact, he will thus find a number of data-points that lie on the “true”
curve g. Suppose now that in accordance with the principle of simplicity,
the scientist draws.the simplest, i.e, the intuitively smoothest, curve
through those points. Then his graph, say g,, may deviate considerably
from the true curve, though it does share at least the measured data-
points with the latter. But as the scientist determines more and more
data-points and plots further simplest graphs, g,, g, &, . . . , these will
coincide more and more nearly with the true curve g, and the associated
functions of f,, fs, f,, . . . will approximate more and more closely the true
functional connection f. Thus, observance of the principle of simplicity
cannot be guaranteed to yield the function f in one step or even in many;
but if there is a functional connection between u and v, the procedure
will gradually lead to a function that approximates the true one to any
desired degree. :

Reichenbach’s argument, which has here been stated in a some-
what simplified form, is ingenious; but its force is limited. For no matter
how far the construction of successive graphs and functions may have
gone, the procedure affords no indication at all of how close an approxi-
mation to the true function has been attained—if indeed there is a true
function at all. (As we noted earlier, for example, the volume of a body

7 H. Reichenbach, Experience and Prediction (Chicago: The University of Chicago
Press, 1938), section 42.
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of gas may seem to be, but is not in fact, a function of its temperature
alone.) Moreover, the argument on grounds of convergence towards the
true curve could be used also to justify certain other, intuitively complex
and unreasonable methods of plotting graphs. For example, it is readily
seen that if we were always to connect any two adjacent data-points by a
semicircle whose diameter is the distance between the points, the re-
sulting curves would eventually converge toward the true curve if there
is one. Yet despite this “justification”, this procedure would not be re-
garded as a sound way of forming quantitative hypotheses. Certain other
nonsimple procedures, however—such as connecting adjacent data-points
by hairpin loops whose length always exceeds a specified minimum value
—are not justifiable in this fashion and can indeed be shown by Reichen-
bach’s argument to be self-defeating. His idea is thus of distinct interest.

A very different view has been advanced by Popper. He construes
the simpler of two hypotheses as the one that has greater empirical con-
tent, and he argues that the simpler hypothesis can therefore more
readily be falsified (found out to be false), if indeed it should be false;
and that this is of great importance to science, which seeks to expose its
conjectures to the most thorough test and possible falsification. He sum-
marizes his argument as follows: “Simple statements, if knowledge is our
object, are to be prized more highly than less simple ones because they
tell us more; because their empirical content is greater; and because they
are better testable.”® Popper makes his notion of degree of simplicity as
degree of falsifiability more explicit by means of two different criteria.
According to one of them, the hypothesis that the orbit of a given planet
is a circle is simpler than the hypothesis that it is an ellipse, because the
former could be falsified by the determination of four positions that are
found not to lie on a circle (three positions can always be connected by
a circle), whereas the falsification of the second hypothesis would require
the determination of at least six positions of the planet. In this sense, the
simpler hypothesis is here the more readily falsifiable one, and it is also
stronger because it logically implies the less simple hypothesis. This
criterion surely contributes to clarifying the kind of simplicity that is of
concern to science.

But Popper alternatively calls one hypothesis more falsifiable, and
hence simpler, than another if the first implies the second and thus has
greater content in a strictly deductive sense. However, greater content is
surely not always linked to greater simplicity. To be sure, sometimes a
strong theory, such as Newton’s theory of gravitation and motion, will

8 K. R. Popper, The Logic of Scientific Discovery (London: Hutchinson, 1959),
p. 142 (italics are quoted). Chapters VI and VII of this book, which offer many
illuminating observations on the role of simplicity in science, contain the presenta-
tion of the ideas here referred to.
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be regarded as simpler than a vast array of unrelated laws of more limited
scope that are implied by it. But the desirable kind of simplification thus
achieved by a theory is not just a matter of increased content; for if two
unrelated hypotheses (e.g., Hooke’s and Snell’s laws) are conjoined, the
resulting conjunction tells us more, yet is not simpler, than either com-
ponent. Also, of the three hypotheses H,, H,, H, considered above, none
tells us more than any of the others; yet they do not count as equally
simple. Nor do those three hypotheses differ in point of falsifiability. If
false, any one of them can be shown to be false with the same ease—
namely, by means of one counter-instance; for example, the data-pair
(4, 10) would falsify them all.

Thus, while all the different ideas hetp/oriefly surveyed shed some
light on the rationale of the principle of simpiicity, the problems of find-
ing a precise formulation and a unified justification for it are not as yet
satisfactorily solved.?

45The Our survey of factors determining the credibility of scientific hy-
probability of  potheses shows that the credibility of a hypothesis H at a given
hypotheses  time depends, strictly speaking, on the relevant parts of the total sci-
entific knowledge at that time, including all the evidence relevant
to the hypothesis and all the hypotheses and theories then accepted that
have any bearing upon it; for as we have seen, it is by reference to these
that the credibility of H has to be assessed. Strictly, therefore, we should
speak of the credibility of a hypothesis relative to a given body of knowl-
edge; the latter might be represented by a large set K of statements—all
- the statements accepted by science at the time,

The question naturally suggests itself whether it is possible to ex-
press this credibility in precise quantitative terms, by formulating a
definition which, for any hypothesis H and any set K of statements,
determines a number ¢(H, K) expressing the degree of credibility that
H possesses relative to K. And since we often speak of hypotheses as
more or less probable, we might wonder further whether this quantitative
concept could not be so defined as to satisfy all the basic principles of
probability theory. In this case, the credibility of a hypothesis relative to
any set K would be a real number no less than 0 and no greater than 1;
a hypothesis that is true on purely logical grounds (such as “Tomorrow
it will rain in Central Park or it won't’) would always have the credibility
1; and finally, for any two logically incompatible statements H, and H,,
the credibility of the hypothesis that one or the other of them is true
9 The reader who wishes to pursue these issues further will find the following dis-
cussions helpful: S. Barker, Induction and Hypothesis (Ithaca: Comell University
Press, 1957); “A Panel Discussion of Sim;{}icity of Scientific Theorics,” Philosophy
of Science, Vol. 28 (1961}, 109-7); W.V.O. Quine, “On Simple Theories of a

Complex World,” Synthese, Vol. 15 (1963), 103-6.

45



236 Philosophy of Natural Science

would equal the sum of their credibilities: ¢(H, or H,,K) = ¢(H,,K)
+ ¢(H,, K).

Various theories for such probabilities have indeed been proposed.°
They proceed from certain axioms like those just mentioned to a variety
of more or less complex theorems that make it possible to determine
certain probabilities provided that others are already known; but they
offer no general definition of the probability of a hypothesis relative to
given information.

And if the definition of the concept ¢(H, K) is to take account of
all the different factors we have surveyed, then the task is very difficult,
to say the least; for as we saw, it is not even ¢+ “ir how such factors as the
simplicity of a hypothesis, or the variety of its supporting evidence, are
to be precisely characterized, let alone expressed in numerical terms.

However, certain illuminating and quite far-reaching results have
recently been obtained by Carnap, who has studied the problem by ref-
erence to rigorously formalized model languages whose logical structure
is considerably simpler than that required for the purpose of science.
Carnap has developed a general method of defining what he calls the
degree of confirmation for any hypothesis expressed in such a language
with respect to any body of information expressed in the same language.
The concept thus defined does satisfy all the principles of probability
theory, and Carnap accordingly refers to it as the logical or inductive
probability of the hypothesis relative to the given information.!

10 One of them by the economist John Maynard Keynes, in his book, A Treatise
on Probability (London: Macmillan & Company, Ltd., 1921).

1 Carnap has given a brief and elementary account of the basic ideas in his article
“Statistical and Inductive Probability,” repnnted in E. H. Madden, ed., The Struc-
ture of Scientific Thought (Boston: Houghton Mifflin Company, 1960), pp. 269-79.
A more recent, very illuminating statement is given in Carnap’s article, “The Aim of
Inductive Logic” in E. Nagel, P. Suppes, and A. Tarski, eds., Logic, Methodology
and Philosophy of Science. Proceedings of the 1960 International Congress (Stan-
ford: Stanford University Press, 1962), pp. 303-18.

46



LAWS AND THEIR ROLE

IN SCIENTIFIC EXPLANATION

5.1 Twobasic  To explain the phenomena of the physical world is one of the
requirements  primary objectives of the natural sciences. Indeed, almost all of the
for scientific  scientific investigations that served as illustrations in the preceding
explanations  chapters were aimed not at ascertaining some particular fact but at
achieving some explanatory insight; they were concerned with
questions such as how puerperal fever is contracted, why the water-lifting
capacity of pumps has its characteristic limitation, why the transmission
of light conforms to the laws of geometrical optics, and so forth. In this
chapter and the next one, we will examine in some detail the character

of scientific explanations and the kind of insight they afford.

That man has long and persistently been concerned to achieve
some understanding of the enormously diverse, often perplexing, and
sometimes threatening occurrences in the world around him is shown by
the manifold myths and metaphors he has devised in an effort to account
for the very existence of the world and of himself, for life and death, for
the motions of the heavenly bodies, for the regular sequence of day and
night, for the changing seasons, for thunder and lightning, sunshine
and rain. Some of these explanatory ideas are based on anthropomorphic
conceptions of the forces of nature, others invoke hidden powers or
agents, still others refer to God’s inscrutable plans or to fate.

Accounts of this kind undeniably may give the questioner a sense
of having attained some understanding; they may resolve his perplexity
and in this sense “answer” his question. But however satisfactory these
answers may be psychologically, they are not adequate for the purposes
of science, which, after all, is concerned to develop a conception of the
world that has a clear, logical bearing on our experience and is thus
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capable of objective test. Scientific explanations must, for this reason,
meet two systematic requirements, which will be called the requirement
of explanatory relevance and the requirement of testability.

The astronomer Francesco Sizi offered the following argument to
show why, contrary to what his contemporary, Galileo, claimed to have
seen through his telescope, there could be no satellites circling around
Jupiter:

There are seven windows in the head, two nostrils, two ears, two eyes
and a mouth; so in the heavens there are two favorable stars, two un-
propitious, two luminaries, and Mercury alone undecided and ir . iffer-
ent. From which and many other similar phenomena of nature such
as the seven metals, etc., which it were tedious to enumerate, we gather
that the number of planets is necessarily seven. . . . Moreover, the
satellites are invisible to the naked eye and therefore can have no influ-
ence on the earth and therefore would be useless and therefore do
not exist.?

The crucial defect of this argument is evident: the “facts” it ad-
duces, even if accepted without question, are entirely irrelevant to the
point at issue; they do not afford the slightest reason for the assumption
that Jupiter has no satellites; the claim of relevance suggested by the
barrage of words like ‘therefore’, ‘it follows’, and ‘necessarily’ is entirely
spurious.

Consider by contrast the physical explanation of a rainbow. It
shows that the phenomenon comes about as a result of the reflection and
refraction of the white light of the sun in spherical droplets of water
such as those that occur in a cloud. By reference to the relevant optical
laws, this account shows that the appearance of a rainbow is to be ex-
pected whenever a spray or mist of water droplets is illuminated by a
strong white light behind the observer. Thus, even if we happened never
to have seen a rainbow, the explanatory information provided by the
physical account would constitute good grounds for expecting or believ-
ing that a rainbow will appear under the specified circumstances. We
will refer to this characteristic by saying that the physical explanation
meets the requirement of explanatory relevance: the explanatory infor-
mation adduced affords good grounds for believing that the phenomenon
to be explained did, or does, indeed occur. This condition must be met
if we are to be entitled to say: “That explains it—the phenomenon in
question was indeed to be expected under the circumstances!”

The requirement represents a necessary condition for an adequate
explanation, but not a sufficient one. For example, a large body of data

! From Holton and Roller, Foundations of Modern Physical Science, p. 160.
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showing a red-shift in the spectra of distant galaxies provides strong
grounds for believing that those galaxies recede from our local one at
enormous speeds, yet it does not explain why.

To introduce the second basic requirement for scientific explana-
tions, let us consider once more the conception of gravitational attraction
as manifesting a natural tendency akin to love. As we noted earlier, this
conception has no test implications whatever. Hence, no empirical find-
ing could possibly bear it out or disconfirm it. Being thus devoid of
empirical content, the conception surely affords no grounds for expecting
the characteristic phenomena of gravitational attraction: it lacks objec-
tive explanatory power. Similar comments apply to explanations in terms
of an insc-utable fate: to invoke such an idea is not to achieve an espe-
cially pro.ound insight, but to give up the attempt at explanation alto-
gether. By contrast, the statements on which the physical explanation of
a rainbow is based do have various test implications; these concern, for
example, the conditions under which a rainbow will be seen in the sky,
and the order of the colors in it; the appearance of rainbow phenomena
in the spray of a wave breaking on the rocks and in the mist of a lawn
sprinkler; and so forth. These examples illustrate a second condition for
scientific explanations, which we will call the requirement of testability:
the statements constituting a scientific explanation must be capable of
empirical test.

It has already been suggested that since the conception of gravita-
tion in terms of an underlying universal affinity has no test implications,
it can have no explanatory power: it cannot provide grounds for expect-
ing that universal gravitation will occur, nor that gravitational attraction
will show such and such characteristic features; for if it did imply such
consequences either deductively or even in a weaker, inductive-proba-
bilistic sense, then it would be testable by reference to those conse-
quences. As this example shows, the two requirements just considered
are interrelafed: a proposed explanation that meets the requirement of
relevance also meets the requirement of testability. (The converse clearly
does not hold.)

Now let us see what forms scientific explanations take, and how
they meet the two basic requirements.

5.2 Deductive-  Consider once more Périer’s finding in the Puy-de-Déme experi-
nomological  ment, that the length of the mercury column in a Torricelli barom-
explanation  eter decreased with increasing altitude. Torricelli's and Pascal’s

ideas on atmospheric pressure provided an explanation for this
phenomenon; somewhat pedantically, it can be spelled out as follows:
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a]l At any location, the pressure that the mercury column in the closed
branch of the Torricelli apparatus exerts upon the mercury below
equals the pressure exerted on the surface of the mercury in the open
vessel by the column of air above it.

b]  The pressures exerted by the columns of mercury and of air are propor-
tional to their weights; and the shorter the columns, the smaller their
weights.

¢]  As Périer carried the apparatus to the top of the mountain, the column
of air above the open vessel became steadily shorter.

d]  (Therefore,) the mercury column in the closed vessel grew steadily
shorter during the ascent.

Thus formulated, the explanation is an argument to the effect that
the phenom *non to be explained, as described by the sentence (d), is
just what is co be expected in view of the explanatory facts cited in (a),
(b), and (c); and that, indeed, (d) follows deductively from the ex-
planatory statements. The latter are of two kinds; (¢) and (b) have the
character of general laws expressing uniform empirical connections;
whereas (c) describes certain particular facts. Thus, the shortening of
the mercury column is here expldined by showing that it occurred in
accordance with certain laws of nature, as a result of certain particular
circumstances. The explanation fits the phenomenon to be explained
into a pattern of uniformities and shows that its occurrence was to be
expected, given the specified laws and the pertinent particular circum-
stances,

The phenomenon to be accounted for by an explanation will
henceforth also be referred to as the explanandum phenomenon; the
sentence describing it, as the explanandum sentence. When the context
shows which is meant, either of them will simply be called the ex-
planandum. The sentences specifying the explanatory information—(a),
(b), (c¢) in our example—will be called the explanans sentences; jointly
they will be said to form the explanans.

As a second example, consider the explanation of a characteristic
of image formation by reflection in a spherical mirror; namely, that gen-
erally 1/u + 1/v = 2/r, where u and v are the distances of object-point
and image-point from the mirror, and r is the mirror’s radius of curvature.
In geometrical optics, this uniformity is explained with the help of the
basic law of reflection in a plane mirror, by treating the reflection of a
beam of light at any one point of a spherical mirror as a case of reflection
in a plane tangential to the spherical surface. The resulting explanation
can be formulated as a deductive argument whose conclusion is the
explanandum sentence, and whose premisses include the basic laws of
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reflection and of rectilinear propagation, as well as the statement that
the surface of the mirror forms a segment of a sphere.?

A similar argument, whose premisses again include the law for
reflection in a plane mirror, offers an explanation of why the light of a
small light source placed at the focus of a paraboloidal mirror is reflected
in 2 beam parallel to the axis of the paraboloid (a principle technologi-
cally applied in the construction of automobile headlights, searchlights,
and other devices).

The explanations just considered may be conceived, then, as de-
ductive arguments whose conclusion is the explanandum sentence, E,
and whose premiss-set, the explanans, consists of general laws, L,, L,,
..., L, and of other statements, C,, C,, . .., Ci, which make assertions
about particular facts. The form of such arguments, which thus con-
stitut _ one type of scientific explanation, can be represented by the
following schema:

L,L,....L
D-N] Explanans sentences
Clxc2v---)ck
E Explanandum sentence

Explanatory accounts of this kind will be called explanations by
deductive subsumption under general laws, or deductive-nomological
explanations. (The root of the term ‘nomological’ is the Greek word
‘nomos’, for law.) The laws invoked in a scientific explanation will also
be called covering laws for the explanandum phenomenon, and the ex-
planatory argument will be said to subsume the explanandum under
those laws.

The explanandum phenomenon in a deductive-nomological expla-
nation may be an event occurring at a particular place and time, such as
the outcome of Périer's experiment. Or it may be some regularity found
in nature, such as certain characteristics generally displayed by rainbows;
or a uniformity expressed by an empirical law such as Galileo’s or Kep-
ler’s laws. Deductive explanations of such uniformities will then invoke
laws of broader scope, such as the laws of reflection and refraction, or
Newton’s laws of motion and of gravitation. As this use of Newton’s
laws illustrates, empirical laws are often explained by means of theoreti-
cal principles that refer to structures and processes underlying the uni-
formities in question. We will return to such explanations in the next

chapter.

2 The derivation of the laws of reflection for the curved surfaces reférred to in this
example and in the next one is simply and lucidly set forth in Chap. 17 of Morris
Kline, Mathematics and the Physical World (New York: Thomas Y. Crowell Com-

pany, 1959).
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Deductive-nomological explanations satisfy the requirement of ex-
planatory relevance in the strongest possible sense: the explanatory
information they provide implies the explanandum sentence deductively
and thus offers logically conclusive grounds why the explanandum phe-
nomenon is to be expected. (We will soon encounter other scientific
explanations, which fulfill the requirement only in a weaker, inductive,
sense.) And the testability requirement is met as well, since the explanans
implies among other things that under the specified conditions, the ex-
planandum phenomenon occurs.

Some scientific explanations conform to the pattern (D-N) quite
closely. This is so, particularly, when certain quantitative features of a
phenomenon are explained by mathematical derivation from covering
general laws, as in the case of reflection in spherical and paraboloidal
mirrors, Or take the celebrated explanation, propounded by Leverrier
(and independently by Adams), of peculiar irregularities in the motion
of the planet Uranus, which on the current Newtonian theory could not
be accounted for by the gravitational attraction of the other planets then
known. Leverrier conjectured that they resulted from the gravitational
pull of an as yet undetected outer planet, and he computed the position,
mass, and other characteristics which that planet would have to possess
to account in quantitative detail for the observed irregularities. His
explanation was strikingly confirmed by the discovery, at the predicted
location, of a new planet, Neptune, which had the quantitative charac-
teristics attributed to it by Leverrier. Here again, the explanation has the
character of a deductive argument whose premisses include general laws
—specifically, Newton’s laws of gravitation and of motion—as well as
statements specifying various quantitative particulars about the disturb-
ing planet. :

Not infrequently, however, deductive-nomological explanations are
stated in an elliptical form: they omit mention of certain assumptions
that are presupposed by the explanation but are simply taken for granted
in the given context. Such explanations are sometimes expressed in the
form ‘E because C’, where E is the event to be explained and C is some
antecedent or concomitant event or state of affairs. Take, for example,
the statement: ‘The slush on the sidewalk remained liquid during the
frost because it had been sprinkled with salt’. This explanation does not
explicitly mention any laws, but it tacitly presupposes at least one: that
the freezing point of water is lowered whenever salt is dissolved in it.
Indeed, it is precisely by virtue of this law that the sprinkling of salt
acquires the explanatory, and specifically causative, role that the elliptical
because-statement ascribes to it. That statement, incidentally, is elliptical
also in other respects; for example, it tacitly takes for granted, and
leaves unmentioned, certain assumptions about the prevailing physical
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conditions, such as the temperature’s not dropping to a very low point.
And if nomic and other assumptions thus omitted are added to the
statement that salt had been sprinkled on the slush, we obtain the
premisses for a deductive-nomological explanation of the fact that the
slush remained liquid.

Similar comments apply to Semmelweis’s explanation that childbed
fever was caused by decomposed animal matter introduced into the
bloodstream through open wound surfaces. Thus formulated, the expla-
nation makes no mention of general laws; but it presupposes that such
contamination of the bloodstream generally leads to blood poisoning
attended by the characteristic symptoms of childbed fever, for this is
implied by the assertion that the contamination causes puerperal fever.
The generalization was no doubt taken for granted by Semmelweis, to
whom the cause of Kolletschka’s fatal illness presented no etiological
problem: given that infectious matter was introduced into the blood-
strcam, blood poisoning would result. (Kolletschka was by no means the
first one to die of blood poisoning resulting from a cut with an infected
scalpel. And by a tragic irony, Semmelweis himself was to suffer the same
fate.) But once the tacit premiss is made explicit, the explanation is
seen to involve reference to general laws.

As the preceding examples illustrate, corresponding general laws
are always presupposed by an explanatory statement to the effect that a
particular event of a certain kind G (e.g., expansion of a gas under con-
stant pressure; flow of a current in a wire loop) was caused by an event
of another kind, F (e.g., heating of the gas; motion of the loop across a
magnetic field). To see this, we need not enter into the complex ramifi-
cations of the notion of cause; it suffices to note that the general maxim
“Same cause, same effect”, when applied to such explanatory statements,
yields the implied claim that whenever an event of kind F occurs, it is
accompanied by an event of kind G.

To say that an explanation rests on general laws is not to say that
its discovery required the discovery of the laws. The crucial new insight
achieved by an explanation will sometimes lie in the discovery of some
particular fact (e.g, the presence of an undetected outer planet; infec-
tious matter adhering to the hands of examining physicians) which, by
virtue of antecedently accepted general laws, accounts for the explan-
andum phenomenon. In other cases, such as that of the lines in the
hydrogen spectrum, the explanatory achievement does lie in the discovery
of a covering law (Balmer’s) and eventually of an explanatory theory
(such as Bohr's); in yet other cases, the major accomplishment of an
explanation may lie in showing that, and exactly how, the explanandum
phenomenon can be accounted for by reference to laws and data about
particular facts that are already available: this is illustrated by the ex-
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planatory derivation of the reflection laws for spherical and paraboloidal
mirrors from the basic law of geometrical optics in conjunction with
statements about the geometrical characteristics of the mirrors.

An explanatory problem does not by itself determine what kind of
discovery is required for its solution. Thus, Leverrier discovered devia-
tions from the theoretically expected course also in the motion of the
planet Mercury; and as in the case of Uranus, he tried to explain these
as resulting from the gravitational pull of an as yet undetected planet,
Vulcan, which would have to be a very dense and very small object
between the sun and Mercury. But no such planet was found, and a satis-
factory explanation was provided only much later by the general theory
of relativity, which accounted for the irregularities not by reference to
some disturbing particular factor, but by means of a new system of laws.

5.3 Universal  As we have seen, laws play an essential role in deductive-nomologi-
laws and  cal explanations. They provide the link by reason of which particu-
accidental  lar circumstances (described by C,, C,, . . ., Cx) can serve to
generalizations  explain the occurrence of a given event. And when the explanan-
dum is not a particular event, but a uniformity such as those
represented by characteristics mentioned earlier .of spherical and para-
boloidal mirrors, the explanatory laws exhibit a system of more compre-

hensive uniformities, of which the given one is but a special case.

The laws required for deductive-nomological explanations share a
basic characteristic: they are, as we shall say, statements of universal
form. Broadly speaking, a statement of this kind asserts a uniform con-
nection between different empirical phenomena or between different
aspects of an empirical phenomenon. It is a statement to the effect that
whenever and wherever conditions of a specified kind F occur, then so
will, always and without exception, certain conditions of another kind, G.
(Not all scientific laws are of this type. In the sections that follow, we
will encounter laws of probabilistic form, and explanations based on
them.)

Here are some examples of statements of universal form: whenever
the temperature of a gas increases while its pressure remains constant, its
volume increases; whenever a solid is dissolved in a liquid, the boiling
point of the liquid is raised; whenever a ray of light is reflected at a plane
surface, the angle of reflection equals the angle of incidence; whenever

_a magnetic iron rod is broken in two, the pieces are magnets again; when-
ever a body falls freely from rest in a vacuum near the surface of the
earth, the distance it covers in ¢ seconds is 162 feet. Most of the laws of
the natural sciences are quantitative: they assert specific mathematical
connections between different quantitative characteristics of physical sys-
tems (e.g., between volume, temperature, and pressure of a gas) or of
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processes (e.g., between time and distance in free fall in Galileo’s law;
between the period of revolution of a planet and its mean distance from
the sun, in Kepler's third law; between the angles of incidence and
refraction in Snell’s law).

Strictly speaking, a statement asserting some uniform connection
will be considered a law only if there are reasons to assume it is true: we
would not normally speak of false laws of nature. But if this requirement
were rigidly observed, then the statements commonly referred to as
Galileo’s and Kepler's laws would not qualify as laws; for according to
current physical knowledge, they hold only approximately; and as we
shall see later, physical theory explains why this is so. Analogous remarks
apply to the laws of geometrical optics. For example, even in a homo-
geneous medium, light does not move strictly in straight lines: it can
bend around corners. We shall therefore use the word ‘law’ somewhat
liberally, applying the term also to certain statements of the kind here
referred to, which, on theoretical grounds, are known to hold only approx-
imately and with certain qualifications. We shall return to this point
when, in the next chapter, we consider the explanation of laws by
theories.

We saw that the laws invoked in deductive-nomological explana-
tions have the basic form: ‘In all cases when conditions of kind F are
realized, conditions of kind G are realized as well’. But, interestingly, not
all statements of this universal form, even if true, can qualify as laws of
nature. For example, the sentence ‘All rocks in this box contain iron’ is
of universal form (F is the condition of being a rock in the box, G that
of containing iron); yet even if true, it would not be regarded as a law,
but as an assertion of something that “happens to be the case”, as an

" “accidental generalization”. Or consider the statement: ‘All bodies con.
sisting of pure gold have a mass of less than 100,000 kilograms’. No doubt
all bodies of gold ever examined by man conform to it; thus, there is
considerable confirmatory evidence for it and no disconfirming instances
are known. Indeed, it is quite possible that never in the history of the
universe has there been or will there be a body of pure gold with a mass
of 100,000 kilograms or more. In this case, the proposed generalization
would not only be well confirmed, but true. And yet, we would presum-
ably regard its truth as accidental, on the ground that nothing in the
basic laws of nature as conceived in contemporary science precludes the
possibility of there being—or even the possibility of our producing—a
solid gold object with a mass exceeding 100,000 kilograms.

Thus, a scientific law cannot be adequately defined as a true state-
ment of universal form: this characterization expresses a necessary, but
not a sufficient, condition for laws of the kind here under discussion.

What distinguishes genuine laws from accidental generalizations?
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This intriguing problem has been intensively discussed in recent years.
Let us look briefly at some of the principal ideas that have emerged
from the debate, which is still continuing.

One telling and suggestive difference, noted by Nelson Goodman,?
is this: a law can, whereas an accidental generalization cannot, serve to
support counterfactual conditionals, i.c., statements of the form ‘If A
were (had been) the case, then B would be (would have been) the case’,
where in fact A is not (has not been) the case. Thus, the assertion ‘If
this paraffin candle had been put into a kettle of boiling water, it would
have melted’ could be supported by adducing the law that paraffin is
liquid above 60 degrees centigrade (and the fact that the boiling point of
water is 100 degrees centigrade). But the statement ‘All rocks in this box
contain iron’ could not be used similarly to support the counterfactual
statement ‘If this pebble had been put into the box, it would contain
iron’. Similarly, a law, in contrast to an accidentally true generalization,
can support subjunctive conditionals, i.., sentences of the type ‘If A
should come to pass, then so would B’, where it is left open whether or
not A will in fact come to pass. The statement ‘If this parafhn candle
should be put into boiling water then it would melt’ is an example.

Closely related to this difference is another one, which is of special
interest to us: a law can, whereas an accidental generalization cannot,
serve as a basis for an explanation. Thus, the melting of a particular
paraffin candle that was put into boiling water can be explained, in
conformity with the schema (D-N), by reference to the particular facts
just mentioned and to the law that paraffin melts when its temperature
is raised above 60 degrees centigrade. But the fact that a particular rock
in the box contains iron cannot be analogously explained by reference to
the general statement that all rocks in the box contain iron.

Tt might seem plausible to say, by way of a further distinction, that
the latter statement simply serves as a conveniently brief formulation of
a finite conjunction of this kind: ‘Rock r; contains iron, and rock r,
contains iron, . . . , and rock 7,, contains iron’; whereas the generalization
about paraffin refers to a potentially infinite set of particular cases and
therefore cannot be paraphrased by a finite conjunction of statements
describing individual instances. This distinction is suggestive, but it is
overstated. For to begin with, the generalization ‘All rocks in this box
contain iron’ does not in fact tell us how many rocks there are in the
box, nor does it name any particular rocks r,, 1., etc. Hence, the general

31n his essay, “The Problem of Counterfactual Conditionals,” reprinted as the
first chapter of his book, Fact, Fiction, and Forecast, 2nd ed. (Indianapolis: The

Bobbs-Merrill Co., Inc., 1965). This work raises fascinating basic problems concern-
ing laws, counterfactual statements, and inductive reasoning, and examines them

from an advanced analytic point of view.
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sentence is not logically equivalent to a finite conjunction of the kind
just mentioned. To formulate a suitable conjunction, we need additional
information, which might be obtained by counting and labeling the rocks
in the box. Besides, our generalization ‘All bodies of pure gold have a
mass of less than 100,000 kilograms’ would not count as a law even if
there were infinitely many bodies of gold in the world. Thus, the criterion
we have under consideration fails on several grounds.

Finally, let us note that a statement of universal form may qualify
as a law even if it actually has no instances whatever. As an example,
consider the sentence: ‘On any celestial body that has the same radius as
the earth but twice its mass, free fall from rest conforms to the formula
s = 32 2", There might well be no celestial object in the entire universe
that has the specified size and mass, and yet the statement has the char-
acter of a law. For it (or rather, a close approximation of it, as in the case
of Galileo’s law) follows from the Newtonian theory of gravitation and
of motion in conjunction with the statement that the acceleration of free
fall on the earth is 32 feet per second per second; thus, it has strong
theoretical support, just like our earlier law for free fall on the moon.

A law, we noted, can support subjunctive and counterfactual con-
ditional statements about potential instances, i.c., about particular cases
that might occur, or that might have occurred but did not. In similar
fashion, Newton’s theory supports our general statement in a subjunctive
version that suggests its lawlike status, namely: ‘On any celestial body
that there may be which has the same size as the earth but twice its mass,
free fall would conform to the formula s = 32t2°. By contrast, the gen-
eralization about the rocks cannot be paraphrased as asserting that any
rock that might be in this box would contain iron, nor of course would
this latter claim have any theoretical support.

Similarly, we would not use our generalization about the mass of
gold bodies—let us call it H—to support statements such as this: ‘Two
bodies of pure gold whose individual masses add up to more than 100,000
kilograms cannot be fused to form one body; or if fusion should be
possible, then the mass of the resulting body will be less than 100,000
kg', for the basic physical and chemical theories of matter that are cur-
rently accepted do not preclude the kind of fusion here considered, and
they do not imply that there would be a mass loss of the sort here
referred to. Hence, even if the generalization H should be true, ie, if no
exceptions to it should ever occur, this would constitute a mere accident
or coincidence as judged by current theory, which permits the occur-
rence of exceptions to H.

Thus, whether a statement of universal form counts as a law will
depend in part upon the scientific theories accepted at the time. This
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is not to say that “empirical generalizations”—statements of universal
form that are empirically well confirmed but have no basis in theory—
never qualify as laws: Galileo’s, Kepler's, and Boyle's laws, for example,
were accepted as such before they received theoretical grounding. The
relevance of theory is rather this: a statement of universal form, whether
empirically confirmed or as yet untested, will qualify as a law if it is
implied by an accepted theory (statements of this kind are often re-
ferred to as theoretical laws); but even if it is empirically well confirmed
and presumably true in fact, it will not qualify as a law if it rules out
certain hypothetical occurrences (such as the fusion of two gold bodies
with a resulting mass of more than 100,000 kilograms, in the case of our
generalization H) which an accepted theory qualifies as possible.*

5.4 Probabilistic  Not all scientific explanations are based on laws of strictly uni-

explanation: versal form. Thus, little Jim’s getting the measles might be

fundamentals explained by saying that he caught the disease from his brother,

who had a bad case of the measles some days earlier. This account

again links the explanandum event to an carlier occurrence, Jim’s expo-

sure to the measles; the latter is said to provide an explanation because

there is a connection between exposure to the measles and contracting

the disease. That connection cannot be expressed by a law of universal

form, however; for not every case of exposure to the measles produces

contagion. What can be claimed is only that persons exposed to the

measles will contract the disease with high probability, i.e., in a high

percentage of all cases. General statements of this type, which we shall

soon examine more closely, will be called laws of probabilistic form or
probabilistic laws, for short.

In our illustration, then, the explanans consists of the probabilistic
law just mentioned and the statement that Jim was exposed to the
measles. In contrast to the case of deductive-nomological explanation,
these explanans statements do not deductively imply the explanandum
statement that Jim got the measles; for in deductive inferences from
true premisses, the conclusion is invariably true, whereas in our example,
it is clearly possible that the explanans statements might be true and
yet the explanandum statement false. We will say, for short, that the
explanans implies the explanandum, not with “deductive certainty”, but
only with near-certainty or with high probability.

The resulting explanatory argument may be schematized as fol-
lows at the top of page 59.

¢ For a fuller analysis of the concegt of law, and for further bibliographic refer-
ences, see E. Nagel, The Structure of Science (New York: Harcourt, Brace & World,
Inc., 1961), Chap. 4.
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The probability for persons exposed to the measles
to catch the disease is high.

Jim was exposed to the measles.

(makes highly probable]

Jim caught the measles.

In the customary presentation of a deductive argument, which was
used, for example, in the schema (D-N) above, the conclusion is sep-
arated from the premisses by a single line, which serves to indicate that
the premisses logically imply the conclusion. The double line used in
our latest schema is meant to indicate analogously that the “premisses”
(the explanans) make the “conclusion” (the explanandum sentence)
more or less probable; the degree of probability is suggested by the
notation in brackets.

Arguments of this kind will be called probabilistic explanations. As
our discussion shows, a probabilistic explanation of a particular event
shares certain basic characteristics with the corresponding deductive-
nomological type of explanation. In both cases, the given event is ex-
plained by reference to others, with which the explanandum event is
connected by laws. But in one case, the laws are of universal form; in
the other, of probabilistic form. And while a deductive explanation
shows that, on the information contained in the explanans, the explanan-
dum was to be expected with “deductive certainty”, an inductive expla-
nation shows only that, on the information contained in the explanans,
the explanandum was to be expected with high probability, and perhaps
with “practical certainty”; it is in this manner that the latter argument
meets the requirement of explanatory relevance,

5.5 Statistical 'We must now consider more closely the two differentiating features
probabilities  of probabilistic explanation that have just been noted: the probabil-
and probabilistic  istic laws they invoke and the peculiar kind of probabilistic implica-
laws tion that connects the explanans with the explanandum.
Suppose that from an urn containing many balls of the same
size and mass, but not necessarily of the same color, successive drawings
are made. At each drawing, one ball is removed, and its color is noted.
Then the ball is returned to the urn, whose contents are thoroughly
mixed before the next drawing takes place. This is an example of a
socalled random process or random experiment, a concept that will
soon be characterized in more detail. Let us refer to the procedure just
described as experiment U, to each drawing as one performance of U,
and to the color of the ball produced by a given drawing as the result, or
the outcome, of that performance.
If all the balls in an urn are white, then a statement of strictly
universal form holds true of the results produced by the performance of
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U: every drawing from the urn yields a white ball, or yields the result
W, for short. If only some of the balls—say, 600 of them—are white,
whereas the others—say 400—are red, then a general statement of prob-
abilistic form holds true of the experiment: the probability for a per-
formance of U to produce a white ball, or outcome W, is .6; in symbols:

5a] P(W,U) = .6

Similarly, the probability of obtaining heads as a result of the
random experiment C of flipping a fair coin is given by

5b] P(HC) = .5

and the probability of obtaining an ace as a result of the random exper:-
ment D of rolling a regular die is

S¢] P(AD) = 1/6

What do such probability statements mean? According to one
familiar view, sometimes called the “classical” conception of probability,
the statement (5¢) would have to be interpreted as follows: each per-
formance of the experiment U effects a choice of one from among 1,000
basic possibilities, or basic alternatives, each represented by one of the
balls in the urn; of these possible choices, 600 are “favorable” to the
outcome W; and the probability of drawing a white ball is simply the
ratio of the number of favorable choices available to the number of all
possible choices, i.e., 600/1,000. The classical interpretation of the prob-
ability statements (5b) and (5c) follows similar lines.

" Yet this characterization is inadequate; for if before each drawing,
the 400 red balls in the urn were placed on top of the white ones, then
in this new kind of um experiment—let us call it U'—the ratio of
favorable to possible basic alternatives would remain the same, but the
probability of drawing a white ball would be smaller than in the experi-
ment U, in which the balls are thoroughly mixed before each drawing.
The classical conception takes account of this difficulty by requiring
that the basic alternatives referred to in its definition of probability must
be “equipossible” or “equiprobable”—a requirement presumably violated
in the case of experiment U'".

This added proviso raises the question of how to define equipossi-
bility or equiprobability. We will pass over this notoriously troublesome
and controversial issue, because—even assuming that equiprobability can
be satisfactorily characterized—the classical conception would still be
inadequate, since probabilities are assigned also to the outcomes of
random experiments for which no plausible way is known of marking
off equiprobable basic alternatives. Thus, for the random experiment D
of rolling a regular die, the six faces might be regarded as representing
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such equiprobable alternatives; but we attribute probabilities to such
results as rolling an ace, or an odd number of points, etc., also in the
case of a loaded die, even though no equiprobable basic outcomes can
be marked off here.

Similarly—and this is particularly important—science assigns prob-
abilities to the outcomes of certain random experiments or random pro-
cesses encountered in nature, such as the step-by-step decay of the atoms
of radicactive substances, or the transition of atoms from one energy
state to another. Here again, we find no equiprobable basic alternatives
in terms of which such probabilities might be classically defined and
computed.

To arrive at a more satisfactory construal of our probability state-
ments, let us consider how one would ascertain the probability of the
rolling of an ace with a given die that is not known to be regular. This
would obviously be done by making a large number of throws with the
die and ascertaining the relative frequency, i.c., the proportion, of those
cases in which an ace turns up. If, for example, the experiment D’ of
rolling the given die is performed 300 times and an ace turns up in 62
cases, then the relative frequency, 62/300, would be regarded as an
approximate value of the probability p(A,D’) of rolling an ace with the
given die. Analogous procedures would be used to estimate the prob-
abilities associated with the flipping of a given coin, the spinning of a
roulette wheel, and so on. Similarly, the probabilities associated with
radioactive decay, with the transitions between different atomic energy
states, with genetic processes, etc., are determined by ascertaining the
corresponding relative frequencies; however, this is often done in highly
indirect ways rather than by simply counting individual atomic or other
events of the relevant kinds.

The interpretation in terms of relative frequencies applies also to
probability statements such as (S5b) and (5c), which concern the
results of flipping a fair (i.e., homogeneous and strictly cylindrical) coin
or tossing a regular (homogeneous and strictly cubical) die: what the
scientist (or the gambler, for that matter) is concerned with in making
a probability statement is the relative frequency with which a certain
outcome O can be expected in long series of repetitions of some random
experiment R. The counting of “equiprobable” basic alternatives and of
those among them which are “favorable” to O may be regarded as
a heuristic device for guessing at the relative frequency of O. And indeed
when a regular die or a fair coin is tossed a large number of times, the
different faces tend to come up with equal frequency. One might expect
this on the basis of symmetry considerations of the kind frequently used
in forming physical hypotheses, for our empirical knowledge affords no
grounds on which to expect any of the faces to be favored over any
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other. But while such considerations often are heuristically useful, they
must not be regarded as certain or as self-evident truths: some very
plausible symmetry assumptions, such as the principle of parity, have
been found not to be generally satisfied at the subatomic level. Assump-
tions about equiprobabilities are therefore always subject to correction
in the light of empirical data concerning the actual relative frequencies
of the phenomena in question. This point is illustrated also by the
statistical theories of gases developed by Bose and Einstein and by Fermi
and Dirac, respectively, which rest on different assumptions concerning
what distributions of particles over a phase space are equiprobable.

The probabilities specified in the probabilistic laws, then, represent
relative frequencies. They cannot, however, be strictly defined as relative
frequencies in long series of repetitions of the relevant random experi-
ment. For the proportion, say, of aces obtained in throwing a given die
will change, if perhaps only slightly, as the series of throws is extended;
and even in two series of exactly the same length, the number of aces
will usually differ. We do find, however, that as the number of throws
increases, the relative frequency of each of the different outcomes tends
to change less and less, even though the results of successive throws con-
tinue to vary in an irregular and practically unpredictable fashion. This
is what generally characterizes a random experiment R with outcomes
0,,0,,..0,: successive performances of R yield one or another of those
outcomes in an irregular manner; but the relative frequencies of the out-
comes tend to become stable as the number of performances increases.
And the probabilities of the outcomes, p(O,,R), p(OR),...0(OuR),
may be regarded as ideal values that the actual frequencies tend to as- -
sume as they become increasingly stable. For mathematical convenience,
the probabilities are sometimes defined as the mathematical limits toward
which the relative frequencies converge as the number of performances
increases indefinitely. But this definition has certain conceptual short-
comings, and in some more recent mathematical studies of the subject,
the intended empirical meaning of the concept of probability is delib-
erately, and for good reasons, characterized more vaguely by means of
the following so-called statistical interpretation of probability:

The statement

p(OR) =7
means that in a long series of performances of random experiment R,

5 Further details on the concept of statistical probability and on the limit-defini-
tion and its shortcomings will be found in E. Nagel's monograph, Principles of the
Theory of Probability (Chicago: University of Chicago Press, 1939). Qur version
of the statistical intergdretation follows that given by H. Cramér on pp. 148-49 of his
‘1)8:]6") Mathematical Methods of Statistics (Princeton: Princeton {Ynivetsity Press,
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the proportion of cases with outcome O is almost certain to be close to r.

The concept of statistical probability thus characterized must be
carefully distinguished from the concept of inductive or logical prob-
ability, which we considered in section 4.5. Logical probability is a
quantitative logical relation between definite statements; the sentence

c(HK) =1

asserts that the hypothesis H is supported, or made probable, to degree r
by the evidence formulated in statement K. Statistical probability is a
quantitative relation between repeatable kinds of events: a certain kind
of outcome, O, and a certain kind of random process, R; it represents,
roughly speaking, the relative frequency with which the result O tends to
occur in a long series of performances of R.

What the two concepts have in common are their mathematical
characteristics: both satisfy the basic principles of mathematical prob-
ability theory:

a] The possible numerical values of both probabilities range from
Otol:

0=p(O,R) =1
0==c(HK) =1

b] The probability for one of two mutually exclusive outcomes of
R to occur is the sum of the probabilities of the outcomes taken sep-
arately; the probability, on any evidence K, for one or the other of two
mutually exclusive hypotheses to hold is the sum of their respective
probabilities:

If 0,, 0, are mutually exclusive, then
$(0, 0r 0z, R) = p(01,R) + $(02R)

1f H,, H; are logically exclusive hypotheses, then
¢(Hy or Hg, K) = ¢(H;,K) + ¢(Hy,K)

c] The probability of an outcome that necessarily occurs in all
cases—such as O or not O—is 1; the probability, on any evidence, of a
hypothesis that is logically (and in this sense necessarily) true, such as
HornotH, is 1:

p(0ornotO,R) =1
¢(HornotH,K) =1

Scientific hypotheses in the form of statistical probability state-
ments can be, and are, tested by examining the long-run relative fre-
quencies of the outcomes concerned; and the confirmation of such
hypotheses is then judged, broadly speaking, in terms of-the closeness of
the agreement between hypothetical probabilities and observed frequen-
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cies. The logic of such tests, however, presents some intriguing special
problems, which call for at least brief examination.

Consider the hypothesis, H, that the probability of rolling an ace
with a certain die is .15; or briefly, that p(A,D) = 15, where D is the
random experiment of rolling the given die. The hypothesis H does not
deductively imply any test implications specifying how many aces will
occur in a finite series of throws of the die. It does not imply, for
example, that exactly 75 among the first 500 throws will yield an ace, nor
even that the number of aces will lie between 50 and 100, say. Hence, if
the proportion of aces actually obtained in a large number of throws
differs considerably from .15, this does not refute H in the sense in which
a hypothesis of strictly universal form, such as ‘All swans are white’, can
be refuted, in virtue of the modus tollens argument, by reference to one
counter-instance, such as a black swan. Similarly, if a long run of throws
of the given die yields a proportion of aces very close to .15, this does
not confirm-H in the sense in which a hypothesis is confirmed by the
finding that a test sentence I that it logically implies is in fact true. For
in this latter case, the hypothesis asserts I by logical implication, and
the test result is thus confirmatory in the sense of showing that a certain
part of what the hypothesis asserts is indeed true; but nothing strictly
analogous is shown for H by confirmatory frequency data; for H does
not assert by implication that the frequency of aces in some long run
will definitely be very close to .15.

But while H does not logically preclude the possibility that the pro-
portion of aces obtained in a long series of throws of the given die may
depart widely from .15, it does logically imply that such departures are
highly improbable in the statistical sense; i.e., that if the experiment
of performing a long series of throws (say, 1,000 of them per series)
is repeated a large number of times, then only a tiny proportion of those
long series will yield a proportion of aces that differs considerably from
.15. For the case of rolling a die, it is usually assumed that the results
of successive throws are “statistically independent”; this means roughly
that the probability of obtaining an ace in a throw of the die does not
depend on the result of the preceding throw. Mathematical analysis
shows that in conjunction with this independence assumption, our
hypothesis H deductively determines the statistical probability for the
proportion of aces obtained in n throws to differ from .15 by no more
than a specified amount. For example, H implies that for a series of
1,000 throws of the die here considered, the probability is about 976
that the proportion of aces will lie between .125 and .175; and similarly,
that for a run of 10,000 throws the probability is about .995 that the
proportion of aces will be between .14 and .16. Thus, we may say that
if H is true, then it is practically certain that in a long trial run the
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observed proportion of aces will differ by very little from the hypo-
thetical probability value .15. Hence, if the observed long-run frequency
of an outcome is not close to the probability assigned to it by a given
probabilistic hypothesis, then that hypothesis is very likely to be false.
In this case, the frequency data count as disconfirming the hypothesis,
or as reducing its credibility; and if sufficiently strong disconfirming evi-
dence is found, the hypothesis will be considered as practically, though
not logically, refuted and will accordingly be rejected. Similarly, close
agreement between hypothetical probabilities and observed frequencies
will tend to confirm a probabilistic hypothesis and may lead to its
acceptance.

If probabilistic hypotheses are to be accepted or rejected on the
basis of statistical evidence concerning observed frequencies, then ap-
propriate standards are called for. These will have to determine (a) what
deviations of observed frequencies from the probability stated by a hy-
pothesis are to count as grounds for rejecting the hypothesis, and (b)
how close an agreement between observed frequencies and hypothetical
probability is to be required as a condition for accepting the hypothesis.
The requirements in question can be made more or less strict, and their
specification is a matter of choice. The stringency of the chosen standards
will normally vary with the context and the objectives of the research in
question. Broadly speaking, it will depend on the importance that is
attached, in the given context, to avoiding two kinds of error that might
be made: rejecting the hypothesis under test although it is true, and
accepting it although it is false. The importance of this point is par-
ticularly clear when acceptance or rejection of the hypothesis is to
serve as a basis for practical action. Thus, if the hypothesis concerns the
probable effectiveness and safety of a new vaccine, then the decision
about its acceptance will have to take into account not only how well
the statistical test results accord with the probabilities specified by the
hypothesis, but also how serious would be the consequences of accepting
the hypothesis and acting on it (e.g. by inoculating children with the
vaccine) when in fact it is false, and of rejecting the hypothesis and
acting accordingly (e.g. by destroying the vaccine and modifying or dis-
continuing the process of manufacture) when in fact the hypothesis is
true. The complex problems that arise in this context form the subject
matter of the theory of statistical tests and decisions, which has been
developed in recent decades on the basis of the mathematical theory of
probability and statistics.®

Many important laws and theoretical principles in the natural
sciences are of probabilistic character, though they are often of more

¢ On this subject, see R. D. Luce and H. Raiffa, Games and Decisions (New York:
John Wiley & Sons, Inc., 1957).

65



256 Philosophy of Natural Science

complicated form than the simple probability statements we have dis-
cussed, For example, according to curmrent physical theory, radioactive
decay is a random phenomenon in which the atoms of each radioactive
element possess a characteristic probability of disintegrating during a
specified period of time. The corresponding probabilistic laws are usually
formulated as statements giving the “halflife” of the element con-
cerned. Thus, the statements that the half-life of radium??¢ is 1,620 years
and that of polonium?® is 3.05 minutes are laws to the effect that the
probability for a radium??® atom to decay within 1,620 years, and for an
atom of polonium?®® to decay within 3.05 minutes, are both one-half.
According to the statistical interpretation cited earlier, these laws imply
that of a large number of radium??® atoms or of polonium?!® atoms given
at a certain time, very close to one-half will still exist 1,620 years, or 3.05
minutes, later; the others having disintegrated by radioactive decay.

Again, in the kinetic theory various uniformities in the behavior of
gases, including the laws of classical thermodynamics, are explained by
means of certain assumptions about the constituent molecules; and
some of these are probabilistic hypotheses concerning statistical regu-
larities in the motions and collisions of those molecules.

A few additional remarks concerning the notion of a probabilistic
law are indicated. It might seem that all scientific laws should be quali-
fied as probabilistic since the supporting evidence we have for them is
always a finite and logically inconclusive body of findings, which can
confer upon them only a more or less high probability. But this argu-
ment misses the point that the distinction between laws of universal
form and laws of probabilistic form does not refer to the strength of the
evidential support for the two kinds of statements, but to their form,
which reflects the logical character of the claim they make. A law of
universal form is basically a statement to the effect that in all cases where
conditions of kind F are realized, conditions of kind G are realized as
well; a law of probabilistic form asserts, basically, that under certain
conditions, constituting the performance of a random experiment R, a
certain kind of outcome will occur in a specified percentage of cases. No
matter whether true or false, well supported or poorly supported, these
two types of claims are of a logically different character, and it is on
this difference that our distinction is based.

As we saw earlier, a law of the universal form “Whenever F then
G’ is by no means a brief, telescoped equivalent of a report stating for
each occurrence of F so far examined that it was associated with an
occurrence of G. Rather, it implies assertions also for all unexamined
cases of F, past as well as present and future; also, it implies counter-
factual and hypothetical conditionals which concern, so to speak “pos-
sible occurrences” of F: and it is just this characteristic that gives such
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laws their explanatory power. Laws of probabilistic form have an analo-
gous status. The law stating that the radioactive decay of radium?®® is a
random process with an associated half-life of 1,620 years is plainly not
tantamount to a report about decay rates that have been observed in
certain samples of radium??%, It concerns the decaying process of any
body of radium2®—past, present, or future; and it implies subjunctive
and counterfactual conditionals, such as: if two particular lumps of
radium??®® were to be combined into one, the decay rates would remain
the same as if the lumps had remained separate. Again, it is this char-
acteristic that gives probabilistic laws their predictive and their explan-
atory force.

56The One of the simplest kinds of probabilistic explanation is illustrated
inductive by our earlier example of Jim’s catching the measles. The general
character of  form of that explanatory argument may be stated thus:

probablhs.tic P(O,R) is close to 1
explanation iisacase of R

[makes highly probable]

iisa case of 0

Now the high probability which, as indicated in brackets, the
explanans confers upon the explanandum is surely not a statistical prob-
ability, for it characterizes a relation between sentences, not between
(kinds of) events. Using a term introduced in Chapter 4, we might say
that the probability in question represents the rational credibility of the
explanandum, given the information provided by the explanans; and as
we noted earlier, in so far as this notion can be construed as a probability,
it represents a logical or inductive probability.

In some simple cases, there is a natural and obvious way of ex-
pressing that probability in numerical terms. In an argument of the
kind just considered, if the numerical value of p(O,R) is specified,
then it is reasonable to say that the inductive probability that the
explanans confers upon the explanandum has the same numerical value.
The resulting probabilistic explanation has the form:

p(OR) =7
iisacascof R
— [r]
iisacascof 0
If the explanans is more complex, the determination of corresponding
inductive probabilities for the explanandum nraises difficult problems,
which in part are still unsettled. But whether or not it is possible to
assign definite numerical probabilities to all such explanations, the pre-
ceding considerations show that when an event is explained by reference
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to probabilistic laws, the explanans confers upon the explanandum
only more or less strong inductive support. Thus, we may distinguish
deductive-nomological from probabilistic explanations by saying that the
former effect a deductive subsumption under laws of universal form, the
latter an inductive subsumption under laws of probabilistic form.

It is sometimes said that precisely because of its inductive char-
acter, a probabilistic account does not explain the occurrence of an
event, since the explanans does not logically preclude its nonoccurrence.
But the important, steadily expanding role that probabilistic laws and
theories play in science and its applications, makes it preferable to view
accounts based on such principles as affording explanations as well,
though of a less stringent kind than those of deductive-nomological
form. Take, for example, the radioactive decay of a sample of one
milligram of polonium?8, Suppose that what is left of this initial amount
after 3.05 minutes is found to have a mass that falls within the interval
from .499 to .501 milligrams. This finding can be explained by the prob-
abilistic law of decay for polonium?!; for that law, in combination with
the principles of mathematical probability, deductively implies that given
the huge number of atoms in a milligram of polonium?8, the probabil-
ity of the specified outcome is overwhelmingly large, so that in a
particular case its occurrence may be expected with “practical certainty”.

Or consider the explanation offered by the kinetic theory of gases
for an empirically established generalization called Graham’s law of
diffusion. The law states that at fixed temperature and pressure, the rates
at which different gases in a container escape, or diffuse, through a thin
porous wall are inversely proportional to the square roots of their
molecular weights; so that the amount of a gas that diffuses through
the wall per second will be the greater, the lighter its molecules. The
explanation rests on the consideration that the mass of a given gas that
diffuses through the wall per second will be proportional to the average
velocity of its molecules, and that Graham’s law will therefore have
been explained if it can be shown that the average molecular velocities
of different pure gases are inversely proportional to the square roots of
their molecular weights. To show this, the theory makes certain assump-
tions broadly to the effect that a gas consists of a very large number of
molecules moving in random fashion at different speeds that frequently
change as a result of collisions, and that this random behavior shows
certain probabilistic uniformities—in particular, that among the mole-
cules of a given gas at specified temperature and pressure, different
velocities will occur with definite, and different, probabilities. These as-
sumptions make it possible to compute the probabilistically expected
values—or, as we might briefly say, the “most probable” values—that the
average velocities of different gases will possess at equal temperatures and
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pressures. These most probable average values, the theory shows, are
indeed inversely proportional to the square roots of the molecular weights
of the gases. But the actual diffusion rates, which are measured experi-
mentally and are the subject of Graham’s law, will depend on the actual
values that the average velocities have in the large but finite swarms of
molecules constituting the given bodies of gas. And the actual average
values are related to the corresponding probabilistically estimated, or
“most probable”, values in a manner that is basically analogous to the
relation between the proportion of aces occurring in a large but finite
series of tossings of a given die and the corresponding probability of roll-
ing an ace with that die. From the theoretically derived conclusion
concerning the probabilistic estimates, it follows only that in view of the
very large number of molecules involved, it is overwhelmingly probable
that at any given time the actual average speeds will have values very
close to their probability estimates and that, therefore, it is practically
certain that they will be, like the latter, inversely proportional to the
square roots of their molecular masses, thus satisfying Graham’s law.?
It seems reasonable to say that this account affords an explanation,
even though “only” with very high associated probability, of why gases
display the uniformity expressed by Graham'’s law; and in physical texts
and treatises, theoretical accounts of this probabilistic kind are indeed
very widely referred to as explanations.

T The “average” velocities here referred to are technically defined as root-mean-
square velocities. Their values do not differ very much from those of average velocities
in the usual sense of the arithmetic mean. A succinct outline of the theoretical
explanation of Graham's law can be found in Chap. 25 of Holton and Roller,
Foundations of Modern Physical Science. The distinction, not explicitly mentioned
in that presentation, between the average value of a quantity for some finite number
of cases and the probabilistically estimated or expected value of that quantity is

briefly discussed in Chap. 6 (especially section 4) of R. P. Feynman, R. B. Leighton,
and M. Sands, The Feynman Lectures on Physics (Reading, Mass.: Addison-Wesley

Publishing Co., 1963).
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THEORIES AND

THEORETICAL EXPLANATION

6.1 General In the preceding chapters, we have repeatedly had occasion to

characteristics ~ mention the important role that theories play in scientific explana-

of theories  tion. We will now examine the nature and function of theories
systematically, in some detail.

Theories are usually introduced when previous study of a class of
phenomena has revealed a system of uniformities that can be expressed
in the form of empirical laws. Theories then seek to explain those regu-
larities and, generally, to afford a deeper and more accurate understand-
ing of the phenomena in question. To this end, a theory construes those
phenomena as manifestations of entities and processes that lie behind
or beneath them, as it were. These are assumed to be governed by
characteristic theoretical laws, or theoretical principles, by means of
which the theory then explains the empirical uniformities that have
been previously discovered, and usually also predicts “new” regularities
of similar kinds. Let us consider some examples.

The Ptolemaic and Copernican systems sought to account for the
observed, “apparent”, motions of the heavenly bodies by means of
suitable assumptions about the structure of the astronomical universe
and the “actual” motions of the celestial objects. The corpuscular and
the wave theories of light offered accounts of the nature of light in terms
of certain underlying processes; and they explained the previously estab-
lished uniformities expressed by the laws of rectilinear propagation,
reflection, refraction, and diffraction as resulting from the basic laws
to which the underlying processes were assumed to conform. Thus, the
refraction of a beam of light passing from air into glass was explained
in Huyghens’ wave theory as resulting from a slowing of the light waves
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in the denser medium. By contrast, Newton’s particle theory attributed
optical refraction to a stronger attraction exerted upon the optical par-
ticles by the denser medium. Incidentally, this construal implies not only
the observed bending of a beam of light: when combined with the
other basic assumptions of Newton’s theory, it also implies that the
particles of light will be accelerated upon entering a denser medium,
rather than decelerated, as the wave theory predicts. These conflicting
implications were tested nearly two hundred years later by Foucault in
the experiment that we briefly considered in Chapter 3, and whose
outcome bore out the relevant implication of the wave theory.

To mention one more example, the kinetic theory of gases offers
explanations for a wide variety of empirically established regularities by
construing them as macroscopic manifestations of statistical regularities
in the underlying molecular and atomic phenomena.

The basic entities and processes posited by a theory, and the laws
assumed to govern them, must be specified with appropriate clarity
and precision; otherwise, the theory cannot serve its scientific purpose.
This important point is illustrated by the neovitalistic conception  of
biological phenomena. Living systems, as is well known, display a
variety of striking features that seem to be distinctly purposive or
teleological in character. Among them are the regeneration of lost limbs
in some species; the development, in other species, of normal organisms
from embryos that are damaged or even cut into several pieces in an
early stage of their growth; and the remarkable coordination of the
many processes in a developing organism which, as though following a
common plan, lead to the formation of a mature individual. According
to neovitalism, such phenomena do not occur in nonliving systems and
cannot be explained by means of the concepts and laws of physics and
chemistry alone; rather, they are manifestations of underlying teleo-
logical agencies of a nonphysical kind, referred to as entelechies or vital
forces. Their specific mode of action is usually assumed not to violate
the principles of physics and chemistry, but to direct the organic proc-
esses, within the range of possibilities left open by the physico-chemical
laws, in such a way that, even in the presence of disturbing factors,
embryos develop into normal individuals, and adult organisms are main-
tained in, or returned to, a properly functioning state.

This conception may well seem to offer us a deeper understanding
of the remarkable biological phenomena in question; it may give us a
sense of being more familiar, more “at home” with them. But under-
standing in this sense is not what is wanted in science, and a conceptual
system that conveys insight into the phenomena in this intuitive sense
does not for that reason alone qualify as a scientific theory. The as-
sumptions made by a scientific theory about underlying processes must
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be definite enough to permit the derivation of specific implications
concerning the phenomena that the theory is to explain. The neovital-
istic doctrine fails on this account. It does not indicate under what
circumstances entelechies will go into action and, specifically, in what
way they will direct biological processes: no particular aspect of embry-
onic development, for example, can be inferred from the doctrine, nor
does it enable us to predict what biological responses will occur under
specified experimental conditions. Hence, when a new striking type of
“organic directiveness” is encountered, all that the neovitalist doctrine
enables us to do is to make the post factum pronouncement: “There is
another manifestation of vital forces!”; it offers us no grounds for saying:
“On the basis of the theoretical assumptions, this is just what was to be
expected—the theory explains it!”

This inadequacy of the neovitalistic doctrine does not stem from
the circumstance that entelechies are conceived as nonmaterial agencies,
which cannot be seen or felt. This becomes clear when we contrast it
with the explanation of the regularities of planetary and lunar motions
by means of the Newtonian theory. Both accounts invoke nonmaterial
agencies: one of them vital forces; the other, gravitational ones. But
Newton’s theory includes specific assumptions, expressed in the law of
gravitation and the laws of motion, which determine (a¢) what gravita-
tional forces each of a set of physical bodies of given masses and
positions will exert upon the others, and (b) what changes in their
velocities and, consequently, in their locations will be brought about
by those forces. It is this characteristic that gives the theory its power
to explain previously observed uniformities and also to yield predic-
tions and retrodictions. Thus, the theory was used by Halley to predict
that a comet he had observed in 1682 would return in 1759, and to
identify it retrodictively with comets whose appearances had been
recorded on six previous occasions, going back to the year 1066. The
theory also played a spectacular explanatory and predictive role in the
discovery of the planet Neptune, on the basis of irregularities in the
orbit of Uranus; and subsequently in the discovery, on the basis of ir-
regularities in Neptune’s orbit, of the planet Pluto.

6.2 Internal  Broadly speaking, then, the formulation of a theory will require
principles . the specification of two kinds of principles; let us call them internal
and bridge  principles and bridge principles for short. The former will charac-
principles  terize the basic entities and processes invoked by the theory and
the laws to which they are assumed to conform. The latter will

indicate how the processes envisaged by the theory are related to
empirical phenomena with which we are already acquainted, and which
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the theory may then explain, predict, or retrodict. Let us consider some
examples.

In the kinetic theory of gases, the internal principles are those that
characterize the “microphenomena” at the molecular level, whereas
the bridge principles connect certain aspects of the microphenomena
with corresponding “macroscopic” features of a gas. Consider the ex-
planation of Graham’s diffusion law, discussed in section 5.6. The in-
ternal theoretical principles it invokes include the assumptions about the
random character of the molecular motions and the probabilistic laws
governing them; the bridge principles include the hypothesis that the
diffusion rate, a macroscopic characteristic of gas, is proportional to the
average velocity of its molecules—a quantity defined in “microlevel”
terms.

Or take the explanation, by the kinetic theory, of Boyle’s law that
the pressure of a fixed mass of gas at constant temperature is inversely
proportional to its volume. This explanation invokes basically the same
internal hypotheses as that of Graham’s law; the connection with the
macro-quantity, pressure, is established by a bridge hypothesis to the
effect that the pressure exerted by a gas in a container results from the
impacts of the molecules upon the containing walls and is quantitatively
equal to the average value of the total momentum that the molecules
deliver per second to a unit square of the wall area. These assumptions
yield the conclusion that the pressure of a gas is inversely proportional
to its volume and directly proportional to the mean kinetic energy of its
molecules. Then, the explanation uses a second bridge hypothesis;
namely, that the mean kinetic energy of the molecules of a fixed mass of
gas remains constant as long as the temperature remains constant: and
this principle, together with the previous conclusion, evidently yields
Boyle's law.

In the examples just considered, the bridge principles may be said
to connect certain theoretically assumed entities that cannot be directly
observed or measured (such as moving molecules, their masses, momenta,
and energies) with more or less directly observable or measurable aspects
of medium-sized physical systems (e.g., the temperature or the pressure
of a gas as measured by a thermometer or a pressure gauge). But bridge
principles do not always connect “theoretical unobservables” with “ex-
perimental observables”. This is illustrated by Bohr's explanation of the
empirical generalization expressed by Balmer’s formula, considered ear-
lier, which specifies, in a readily computable form, the wavelengths of a
(theoretically infinite) series of discrete lines that appear in the emission
spectrum of hydrogen. Bohr's explanation is based on the assumptions
that (a) the light emitted by electrically or thermally “excited” hydrogen
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vapor results from the energy released when electrons in individual atoms
jump from a higher to a lower energy level; that (b) only a certain
(theoretically infinite) set of quantitatively definite, discrete energy levels
are available to the electron of a hydrogen atom; and that (c) the energy
AE released by an electron jump produces light of exactly one wave-
length A, which is given by the law A = (hec) /AE, where h is Planck’s
constant and c is the velocity of light. As a consequence, each of the
lines in the hydrogen spectrum is seen to correspond to a “quantum
jump” between two specific energy levels; and from Bohr's theoretical
assumptions, Balmer’s formula follows indeed in quantitative detail.
The internal principles here invoked include the assumptions character-
izing Bohr’s model of the hydrogen atom as consisting of a positive
nucleus and an electron moving about it in one or another of a series of
possible orbits, each corresponding to-one energy level; and the assump-
tion (b) above. The bridge principles, on the other hand, comprise such
hypotheses as (a¢) and (c) above: they connect the “unobservable”
theoretical entities with the subject matter to be explained—the wave-
lengths of certain lines in the emission spectrum of hydrogen. These
wavelengths are not observables in the ordinary sense of the word, and
they cannot be as simply and directly measured as, say, the length and
width of a picture frame or the weight of a bag of potatoes. Their
measurement is a highly indirect procedure that rests on a great many
assumptions, including those of the wave theory of light. But in the
context we are considering, those assumptions are taken for granted;
they are presupposed even in just stating the uniformity for which a
theoretical explanation is sought. Thus, the phenomena to which
bridge principles link the basic entities and processes assumed by a
theory need not be “directly” observable or measurable: they may well
be characterized in terms of previously established theories, and their
observation or measurement may presuppose the principles of those
theories.

Without bridge principles, as we have seen, a theory would have
no explanatory power. Without bridge principles, we may add, it would
also be incapable of test. For the internal principles of a theory are
concerned with the peculiar entities and processes assumed by the
theory (such as the jumps of electrons from one atomic energy level to
another in Bohr’s theory), and they will therefore be expressed largely
in terms of characteristic “theoretical concepts”, which refer to those
entities and processes. But the implications that permit a test of those
theoretical principles will have to be expressed in terms of things and
occurrences with which we are antecedently acquainted, which we al-
ready know how to observe, to measure, and to describe. In other words,
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while the internal principles of a theory are couched in its characteristic
theoretical terms (‘nucleus’, ‘orbital electron’, ‘energy level’, ‘electron
jump’), the test implications must be formulated in terms (such as
‘hydrogen vapor’, ‘emission spectrum’, ‘wavelength associated with a
spectral line’) which are “antecedently understood”, as we might say,
terms that have been introduced prior to the theory and can be used
independently of it. Let us refer to them as antecedently available or
pretheoretical terms. The derivation of such test implications from the
internal principles of the theory evidently requires further premisses that
establish connections between the two sets of concepts; and this, as the
preceding examples show, is accomplished by appropriate bridge prin-
ciples (connecting, for example, the energy released in an electron jump
with the wavelength of the light that is emitted as a result). Without
bridge principles, the internal principles of a theory would yield no test
implications, and the requirement of testability would be violated.

6.3 Theoretical  Testability-in-principle and explanatory import, though crucially
understanding  important, are nevertheless only minimal necessary conditions that
a scientific theory must satisfy; a system that meets these require-
ments may yet afford little illumination and may lack scientific interest.

The distinctive characteristics of a good scientific theory cannot
be stated in very precise terms. Several of them were suggested in
Chapter 4, when we discussed the considerations that bear on the con-
firmation and acceptability of scientific hypotheses. But some additional
observations are now in order.

In a field of inquiry in which some measure of understanding has
already been achieved by the establishment of empirical laws, a good
theory will deepen as well as broaden that understanding. First, such a

theory offers a systematically unified account of quite diverse phenomena.
It traces all of them back to the same underlying processes and presents
the various empirical uniformities they exhibit as manifestations of one
common set of basic laws. We noted earlier the great diversity of em-
pirical regularities (such as those shown by free fall; the simple pendu-
lum; the motions of the moon, the planets, comets, double stars, and
artificial satellites; the tides, and so forth) that are accounted for by the
basic principles of Newton’s theory of gravitation and of motion. In
similar fashion, the kinetic theory of gases exhibits a wide variety of
empirical uniformities as manifestations of certain basic probabilistic
uniformities in the random motions of the molecules. And Bohr's theory
of the hydrogen atom accounts not only for the uniformity expressed by
Balmer’s formula, which refers to just one series of lines in the spectrum
of hydrogen, but equally for analogous empirical laws representing the
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wavelengths of other series of lines in the same spectrum, including
several series whose member lines lie in the invisible infrared or ultra-
violet parts of the spectrum.

A theory will usually deepen our understanding also in a differ-
ent way, namely by showing that the previously formulated empirical
laws that it is meant to explain do not hold strictly and unexceptionally,
but only approximately and within a certain limited range of application.
Thus, Newton’s theoretical account of planetary motion shows that
Kepler’s laws hold only approximately, and it explains why this is so:
the Newtonian principles imply that the orbit of a planet moving about
the sun under its gravitational influence alone would indeed be an
ellipse, but that the gravitational pull exerted on it by other planets
leads to departures from a strictly elliptical path. The theory gives a
quantitative account of the resulting perturbations in terms of the masses
and spatial distribution of the disturbing objects. Similarly, Newton’s
theory accounts for Galileo’s law of free fall as simply one special
manifestation of the basic laws for motion under gravitational attraction;
but in so doing, it shows also that the law (even if applied to free fall in
a vacuum) holds only approximately. One of the reasons is that in
Galileo's formula the acceleration of free fall appears as a constant
(twice the factor 16 in the formula ‘s = 16¢*’), whereas on Newton's
inverse-square law of gravitational attraction, the force acting upon the
falling body increases as its distance from the center of the earth de-
creases; hence, by virtue of Newton’s second law of motion, its accelera-
tion, too, increases in the course of the fall. Analogous remarks apply to
the laws of geometrical optics as viewed from the vantage point of wave-
theoretical optics. For example, even in a homogeneous medium, light
does not move strictly in straight lines; it can bend around corners.
And the laws of geometrical optics for reflection in curved mirrors and
for image-formation by lenses hold only approximately and within certain
limits. '

It might therefore be tempting to say that theories often do not
explain previously established laws, but refute them. But this would
give a distorted picture of the insight afforded by a theory. After all
a theory does not simply refute the earlier empirical generalizations in
its field; rather, it shows that within a certain limited range defined by
qualifying conditions, the generalizations hold true in fairly close ap-
proximation. The limited range for Kepler’s laws includes those cases in
which the masses of the disturbing additional planets are small compared
with that of the sun, or their distances from the given planet are large
compared with its distance from the sun. Similarly, the theory shows that
Galileo’s law holds approximately for free fall over short distances.

Finally, a good theory will also broaden our knowledge and under-
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standing by predicting and explaining phenomena that were not known
when the theory was formulated. Thus, Torricelli’s conception of a sea
of air led to Pascal’s prediction that the column of a mercury barometer
would shorten with increasing height above sea level. Einstein’s general
theory of relativity not only accounted for the known slow rotation of
the orbit of Mercury, but also predicted the bending of light in a gravi-
tational field, a forecast subsequently borne out by astronomical measure-
ments. Maxwell’s theory of electromagnetism implied the existence of
electromagnetic waves and predicted important characteristics of their
propagation. Those implications, too, were later confirmed by the experi-
mental work of Heinrich Hertz, and they provided the basis for the
technology of radio transmission, among other applications.

Such striking predictive successes will of course greatly strengthen
our confidence in a theory that already has given us a systematically
unified explanation—and often also a correction—of previously estab-
lished laws. The insight that such a theory gives us is much deeper than
that afforded by empirical laws; and it is widely held, therefore, that a
scientifically adequate explanation of a class of empirical phenomena
can be achieved only by means of an appropriate theory. Indeed, it
seems to be a remarkable fact that even if we limited ourselves to a
study of the more or less directly observable or measurable aspects of our
world and tried to explain these, in the manner discussed in Chapter 5,
by means of laws couched in terms of observables, our efforts would
have only limited success. For the laws that are formulated at the
observational level generally turn out to hold only approximately and
within a limited range; whereas by theoretical recourse to entities and
events under the familiar surface, a much more comprehensive and
exact account can be achieved. It is intriguing to speculate whether
simpler worlds are conceivable where all phenomena are at the observ-
able surface, so to speak; where there occur perhaps only changes of
color and of shape, within a finite range of possibilities, and strictly in
accordance with some simple laws of universal form.

6.4 The status At any rate, the natural sciences have achieved their deepest and
of theoretical  most far-reaching insights by descending below the level of familiar
entities  empirical phenomena; and it is hardly surprising, therefore, that
some thinkers consider the underlying structures, forces, and proc-
esses assumed by well-established theories as the only real constituents of
the world. This is the view expressed by Eddington in the provocative
Introduction to his book, The Nature of the Physical World. Eddington
begins by telling his readers that, in settling down to write his book,
he drew up his two chairs to his two tables; and he goes on to expound

the differences between the tables:
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One of them has been familiar to me from earliest years. . . . It has
extension; it is comparatively permanent; it is coloured; above all it is
substantial . . . Table No. 2 is my scientific table. It . . . is mostly
emptiness. Sparsely scattered in that emptiness are numerous electric
charges rushing about with great speed; but their combined bulk
amounts to less than a billionth of the bulk of the table itself. [Never-
theless, it] supports my writing paper as satisfactorily as table No. 1;
for when I lay the paper on it the little electric particles with their
headlong speed keep on hitting the underside, so that the paper is
maintained in shuttlecock fashion at a nearly steady level. . . . It makes
all the difference in the world whether the paper before me is poised
as it were on a swarm of flies . . ., or whether it is supported because
there is substance below it, it being the intrinsic nature of substance to
occupy space to the exclusion of other substance. . . . I need not tell
you that modern physics has by delicate test and remorseless logic
assured me that my second scientific table is the only one which is
really there . . . On the other hand I need not tell you that modem
physics will never succeed in exorcising that first table—strange com-
pound of external nature, mental imagery and inherited prejudice—
which lies visible to my eyes and tangible to my grasp.?

But this conception, however persuasively presented, is untenable;
for to explain a phenomenon is not to explain it away. It is neither the
aim nor the effect of theoretical explanations to show that the familiar
things and events of our everyday experience are not “really there”.
The kinetic theory of gases plainly does not show that there are no such
things as macroscopic bodies of different gases that change volumes under
changing pressure, diffuse through porous walls at characteristic rates,
etc., and that there “really” are only swarms of randomly buzzing
molecules. On the contrary, the theory takes for granted that there are
those macroscopic events and uniformities, and it seeks to account for
them in terms of the microstructure of the gases and the microprocesses
involved in their various changes. That the macrophenomena are pre-
supposed by the theory is clearly shown by the fact that its bridge
principles make explicit reference to certain macroscopic characteristics
—such as pressure, volume, temperature, diffusion rate—which are as-
sociated with macro-objects and macroprocesses. Similarly, the atomic
theory of matter does not show that a table is not a substantial, solid,
hard object; it takes these things for granted and seeks to show in
virtue of what aspects of the underlying microprocesses a table displays

" those macroscopic characteristics. In so doing, the theory may, of

1 A, S. Eddington, The Nature of the Physical World (New York: Cambridge

University Press, 1929), pp. ix-xii (italics in the original}; quoted by kind permission
of Cambridge University .

78



6 Theories and Theoretical Explanation 269

course, reveal as mistaken certain particular notions we might have
entertained about the nature of a body of gas or of a solid object, such
as perhaps the notion that such physical bodies are thoroughly homoge-
neous, no matter how small the parts of them that might be considered;
but correcting misconceptions of this kind is a far cry from showing that
everyday objects and their familiar characteristics are not “really there”.

Some scientists and philosophers of science have taken a view
diametrically opposite to that just' considered. Broadly speaking, they
deny the existence of “theoretical entities” or regard theoretical assump-
tions about them as ingeniously contrived fictions, which afford a
formally simple and convenient descriptive and predictive account of
observable things and events. This general view has been held in
several rather different forms, and on different grounds.

One type of consideration, which has been influential in recent
philosophical studies of the issue, can be briefly stated as follows: if a
proposed theory is to have a clear meaning, then surely the new theo-
retical concepts that are used in its formulation must be clearly and
objectively defined in terms of concepts that are already available and
understood. But as a rule, such full definitions are not provided in the
customary formulation of a theory; and closer logical examination of
the way in which new theoretical concepts are connected with ante-
cedently available concepts suggests that such definitions may indeed be
unattainable. But, so the argument continues, a theory expressed in terms
of such inadequately characterized concepts must then in turn lack fully
definite meaning: its principles, which purport to speak about certain
theoretical entities and occurrences, are, strictly, no definite statements at
all; they are neither true nor false; at best they form a convenient and
effective symbolic apparatus for inferring certain empirical phenomena
(such as the appearance of characteristic lines in a suitably placed
spectrograph) from others (such as the passing of an electric discharge
through hydrogen gas).

The ways in which the meanings of scientific terms are specified
will be examined more closely in the following chapter. For the moment,
let us note only that the demand for full definition, on which this
argument is based, is overly stringent. It is possible to make clear and
precise use of a concept for which no full definition, but only a partial
specification of meaning, has been provided. For example, a characteriza-
tion of the concept of temperature by reference to the readings of a
mercury thermometer affords no general definition of temperature; it
assigns no temperature below the freezing point or above the boiling
point of mercury. Yet, within these limits, the concept can be used in a
precise and objective fashion. Moreover, the range of its applicability can
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be expanded by specifying alternative ways of measuring temperatures.
Or consider the principle that the inertial masses of physical bodies are
inversely proportional to the accelerations imparted upon them by
equal forces. Again, this formulation does not fully define what is meant
by the mass of a given body; and yet it affords a partial characterization
that permits a test of certain statements couched in terms of the
concept of mass. The bridge principles of a theory similarly provide
partial criteria, expressed in terms of antecedently understood con-
cepts, for the use of theoretical terms. Hence, the lack of full definitions
can hardly justify the conception of theoretical terms, and of the
theoretical principles containing them, as mere symbolic computation
devices.

A second, quite different, argument against the existence of theo-
retical entities proceeds as follows: Any body of empirical findings,
however rich and diverse, can in principle be subsumed under many
different laws or theories. Thus, if a set of experimentally determined
pairs of associated values of an “independent” and a “dependént”
physical variable are represented by points in a graph, then, as we saw
earlier, the points can be connected by many different curves; and each
of these will represent one tentative law that accounts for the as-
sociated pairs that have so far been measured. An analogous remark
holds for theories. But when two alternative theories—such as the
particle and the wave theories of light before the “crucial experiments”
of the nineteenth century—equally account for a given set of empirical
phenomena, then, if “real existence” is granted to the theoretical entities
assumed by one of them, it must be granted as well to the quite differ-
ent entities assumed by the other; hence, the entities posited by none of
the alternative theories can be held actually to exist.

This argument, however, would oblige us to say also that when we
seem to hear a bird singing outside the open window, we must not
assume that there really is a bird, since the sound could be accounted
for also by the alternative hypothesis that someone was blowing a bird
whistle. But clearly, there are ways of finding out which, if either, of
these assumptions is correct; for apart from explaining the sound we
heard, the two accounts have further, different, implications that we can
test if we want to find out whether it was “really” a bird or a whistle or
still something else that produced the sound. Similarly, as we saw
earlier, the two optical theories have further differentiating implications
by which they can be, and have been, tested. The gradual elimination
of some among the conceivable alternative hypotheses or theories can
never, it is true, narrow the field of competitors to the point where only
one of them is left; hence, we can never establish with certainty that a
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given theory is true, that the entities it posits are real. But to say that is
not to disclose a peculiar flaw in our claims about theoretical entities,
but to note a pervasive characteristic of all empirical knowledge.

A third argument that has been adduced against assuming the
existence of theoretical entities is, briefly, to this effect: scientific inquiry
is aimed, in the last analysis, at providing a systematic and coherent
account of the “facts”, of the phenomena we encounter in our sense
experience; and its explanatory assumptions should, strictly, refer only
to entities and processes that are at least potential facts, potentially
accessible to our senses. Hypotheses and theories that purport to go
essentially behind the phenomena of our experience can at best be useful
formal devices but cannot claim to represent aspects of the physical
world. On grounds of this kind, the eminent physicist-philosopher
Ernst Mach, among others, held that the atomic theory of matter pro-
vided a mathematical model for the representation of certain facts, but
that no physical “reality” could be claimed for atoms or molecules.

We have noted, however, that if science were thus to limit itself
to the study of observable phenomena, it would hardly be able to formu-
late any precise and general explanatory laws at all, whereas quantitively
precise and comprehensive explanatory principles can be formulated in
terms of underlying entities such as molecules, atoms, and subatomic
particles. And since such theories are tested and confirmed in basically
the same way as hypotheses couched in terms of more or less directly
observable or measurable things and events, it seems arbitrary to reject
theoretically postulated entities as fictitious,

But is there not an important difference, after all, between these
two levels? Suppose we wish to explain the performance of a given
“black box”, which responds to different kinds of input by specific and
complex outputs. We might then venture a hypothesis about the
internal structure of the box—perhaps in terms of wheels, gears, and
ratchets, or in terms of wires, vacuum tubes, and currents. Such a
hypothesis might be tested by varying the inputs and checking the
corresponding outputs; by listening to noises coming from the box, and
the like. But there remains also the possibility of opening the box and
checking the hypothesis by direct inspection; for the components as-
sumed in the hypothesis are all macroscopic and, in principle, accessible
to observation. When, on the other hand, the input-output connection
between pressure changes and associated volume changes of a gas at
constant temperature are explained in terms of molecular micromech-
anisms, no such test by observation is possible.

But the distinction here suggested is not as clear and as telling as
it might seem, for the class of observables it refers to is not very
precisely delimited. Presumably it should include all those things, prop-
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erties, and processes whose presence or occurrence can be ascertained
by normal human observers “immediately”, without the mediation of
special instruments or of interpretative hypotheses or theories. The
wheels, gears, and ratchets of our example would belong to this class, and
so would their interlocking movements. Similarly, wires and switches
might be counted as observable. But doubts would arise concerning the
status of things such as vacuum tubes. Undeniably; a vacuum tube is a
physical object that can be “directly” seen and felt; but when we refer
to it as a vacuum tube (as we would in explaining the output of the
black box), we describe that object as having a certain complex property
(namely, a characteristic physical structure); and we must ask there-
fore, whether an object is observable “under that description”, whether
the property of being a vacuum tube is of a kind whose presence in a
given case can be ascertained by immediate observation. Now in order to
determine whether a given object is a vacuum tube, we may sometimes
simply see whether it looks like one, but for a more dependable decision—
especially on whether the object is a properly working vacuum tube, as
assumed in the black-box example—various physical tests would be re-
quired; these would make use of instruments, and the interpretation of
the instrument readings would presuppose a host of physical laws and
theoretical principles. But if the characterization of an object as a
vacuum tube must be counted as going beyond the realm of observables,
then the black-box example loses its force.

Let us pursue the argument in a somewhat different direction.
Wires strung in the black box, we said, might count as observables.
But we would surely not want to say that a rather fine wire becomes a
fictitious entity when weakening eyesight compels us to use glasses to see
it? But then, it would be arbitrary to disqualify objects, such as extremely
fine wires or threads, or small specks of dust, that no human observer
can see without a magnifying glass. By the same token, we will have to
admit objects that can be observed only with the aid of a microscope, and
so on down to objects that can be observed only by means of Geiger
counters, bubble chambers, electron miscroscopes, and other such de-
vices.

Thus, there is a gradual transition from the macroscopic objects of
our everyday experience to bacteria, viruses, molecules, atoms, and sub-
atomic particles; and any line drawn to divide them into actual physical
objects and fictitious entities would be quite arbitrary.?

2 Our discussion of the status of theoretical entities has been limited to a considera-
tion of some important basic issues. A fuller and more penetrating study, and refer-
ences to further literature, will be found in Chaps.5 and 6 of E. Nagel, The Structure
of Science. Another very stimulating work dealing with these issues is J.J.C. Smart,
Philosophy and Scientific Realism (London: Routledge and Kegan Paul Ltd.; New
York: The Humanities Press, 1963).
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6.5 Explanation It is sometimes said that scientific explanations effect a reduction
and''reduction to of a puzzling, and often unfamiliar, phenomenon to facts and
the familiar"" principles with which we are already familiar. And no doubt this
characterization fits some explanations quite well. The wave-
theoretical explanations of previously established optical laws, the ex-
planations offered by the kinetic theory of gases, and even Bohr’s models
of the atoms of hydrogen and the other elements—all invoke certain
ideas with which we are acquainted through their use in the description
and explanation of familiar phenomena, such as the propagation of
water waves, the motions and collisions of billiard balls, the orbital
motion of the planets about the sun. Some writers, such as the physicist
N. R. Campbell, have maintained that a scientific theory that is to be of
any value at all must “display an analogy”: the basic laws that its
internal principles specify for the theoretical entities and processes must
be “analogous to some known laws”, as the laws for the propagation of
light waves are analogous to (have the same mathematical form as) the
propagation of water waves.

However, the view that an adequate scientific explanation must, in
a more or less precise sense, effect a reduction to the familiar, does not
stand up under close examination. To begin with, this view would seem
to imply the idea that phenomena with which we are already familiar
are not in need of, or perhaps incapable of, scientific explanation;
whereas in fact, science does seek to explain such “familiar” phenomena
as the regular sequence of day and night and of the seasons, the phases
of the moon, lightning and thunder, the color patterns of rainbows and
of oil slicks, and the observation that coffee and milk, or white and
black sand, when stirred or shaken, will mix, but never unmix again.
Scientific explanation is not aimed at creating a sense of at-homeness or
of familiarity with the phenomena of nature. That kind of feeling may
well be evoked even by metaphorical accounts that have no explanatory
value at all, such as the “natural affinity” construal of gravitation or the
conception of biological processes as being directed by vital forces. What
scientific explanation, especially theoretical explanation, aims at is not
this intuitive and highly subjective kind of understanding, but an ob-
jective kind of insight that is achieved by a systematic unification, by
exhibiting the phenomena as manifestations of common underlying
structures and processes that conform to specific, testable, basic prin-
ciples. If such an account can be given in terms that show certain
analogies with familiar phenomena, then very well.

Otherwise, science will not hesitate to explain even the familiar by
reduction to the unfamiliar, by means of concepts and principles of
novel kinds that may at first be repugnant to our intuition. This has
happened, for example, in the theory of relativity with its startling impli-
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cations concerning the relativity of length, mass, temporal duration, and
simultaneity; and in quantum mechanics with its principle of uncertainty
and its renunciation of a strictly causal conception of the processes
involving individual elementary particles.
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CONCEPT FORMATION

{

7.1 Definition  Scientific statements are typically formulated in special terms,
such as ‘mass’, ‘force’, ‘magnetic field’, ‘entropy’, ‘phase space’,
and so forth. If those terms are to serve their purpose, their meanings
will have to be so specified as to make sure that the resulting statements
are properly testable and that they lend themselves to use in explana-
tions, predictions, and retrodictions. In this chapter, we shall consider
how this is done.

It will be helpful for our purposes to distinguish clearly between
concepts, such as those of mass, force, magnetic field, etc, and the
corresponding terms, the verbal or symbolic expressions that stand for
those concepts. To refer to particular terms, just as to refer to particular
things of any other kind, we need names or designations for them. In
accordance with a standard convention of logic and analytic philosophy,
we form a name or designation for a term by placing single quotes
around it. Accordingly, we speak of the terms ‘mass’, ‘force’, etc., as we
have already done in the first sentence of this section. We will be
concerned, then, in this chapter, with methods of specifying the mean-
ings of scientific terms and with the requirements those methods have to
meet.

Definition may scem the most obvious, and perhaps the only
adequate, method of characterizing a scientific concept. Let us con-
sider this procedure. Definitions are offered for one or the other of
two quite different purposes, namely:

a) to state or describe the accepted meaning, or meanings, of a
term already in use;

b] to assign, by stipulation, a special meaning to a given term,
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which may be a newly coined verbal or symbolic expression (such as
‘pi-meson’) or an “old” term that is to be used in a specific technical
sense (e.g., the term ‘strangeness’ as used in the theory of elementary
particles).

Definitions serving the first purpose will be called descriptive; those
serving the second purpose will be called stipulative.

Definitions of the first kind can be stated in the form

has the same meaning as — — —

The term to be defined, or the definiendum, occupies the place of the
solid line on the left, while the place of the broken line is occupied by
the defining expression, or the definiens. Here are some examples of such
descriptive definitions:

‘Father’ has the same meaning as ‘male parent’.
‘Appendicitis’ has the same meaning as ‘inflammation of the appendix’.
‘Simultaneous’ has the same meaning as ‘occurring at the same time’.

Definitions such as these purport to analyze the accepted meaning of a
term and to describe it with the help of other terms—whose meaning
must be antecedently understood if the definition is to serve its purpose.
They will therefore also be called descriptive definitions, and more
specifically, analytic definitions. In the next chapter, we will consider
statements that may be viewed as descriptive definitions of a nonanalytic
kind: they specify the range of application, or extension, of a term, rather
than its meaning, or intension. Descriptive definitions of either kind
claim to describe certain aspects of the accepted use of a term; they may,
therefore, be said to be more or less accurate, and even true or false.
Stipulative definitions, on the other hand, serve to introduce an
expression that is to be used in some specific sense in the context of a
discussion, or a theory, or the like. Such definitions can be given the

form

is to have the same meaningas — — —
or
let us understand the same thing as by — — —

By

The expressions on the left and right are again called the definiendum
and the definiens, respectively. The resulting definitions have the char-
acter of stipulations or conventions, which evidently cannot be qualified
as true or false. The following examples illustrate ways in which such
definitions might be formulated in scientific writings; each of them can
readily be put into one of the standard forms just cited.
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Let us use the term ‘acholia’ as short for ‘lack of secretion of bile’.
The term ‘density’ is to be short for ‘mass in grams per cubic centi-

meter’,
By an acid we will understand an electrolyte that furnishes hydrogen

ions.
Particles of charge zero and mass number one will be called neutrons.

A term defined by an analytic or a stipulative definition can always
be eliminated from a sentence by substituting its definiens for it: this
procedure turns the sentence into an equivalent one that no longer con-
tains the term. For example, on one of the definitions just formulated,
the sentence ‘The density of gold is greater than that of lead’ can be
translated into ‘A cubic centimeter of gold has a greater mass in grams
than the same volume of lead.” In this sense, as Quine has put it, to
define a term is to show how to avoid it.

The injunction ‘Define your terms!’ has the ring of a sound scien-
tific maxim; indeed, it may seem that ideally, every term used in a
scientific theory or in a given branch of science should be precisely
defined. But that is logically impossible; for having formulated a defini-
tion for one term, we would then have to define in turn each of the
terms used in the definiens, and then the terms used to define any of
the latter, and so forth. But in the resulting chains of definitions, we
must avoid “circles” defining a term with the help of some of its pre-
decessors in the chain. Such a circle is illustrated by the following string
of definitions, in which the phrase ‘is to have the same meaning as’ is
replaced by the abbreviatory symbol ‘=p¢’:

‘parent’ = p ‘father or mother’
‘father’ = p ‘male parent’
‘mother’ = p, ‘parent, but not father’

To determine the meaning of ‘father’, we would replace the term ‘parent’
in the second definition by its definiens as specified in the first. But this
yields the expression ‘male (father or mother)’, which defines the term
‘father’ by means of itself (and of other terms), and thus falls short of
its purpose; for it does not enable us to avoid the defined word. Similar
troubles arises from the third definition. The only way of escaping this
difficulty in our attempt to define every term of a given system is never
to use a term in a definiens that has been defined earlier in the chain.
But then, our chain of definitions will never end; for however far we
may have gone, the terms used in the last definiens remain to be defined
since, on our assumption, they have not been defined before. Such an
infinite regress would, of course, be self-defeating: our understanding of
one term would depend on that of the next one, which would depend
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on that of the next one, and so on indefinitely, with the result that no
term would ever be explained.

Not every term in a scientific system, therefore, can be defined by
means of other terms of the system: there will have to be a set of so-
called primitive terms, which receive no definitions within the system,
and which serve as a basis for defining all the other terms. This is very
clearly taken into account in the axiomatic formulation of mathematical
theories. In each of the different modern axiomatizations of Euclidean
geometry, for example, a list of primitive terms is explicitly specified, and
all other terms are introduced by chains of stipulative definitions that
lead back to expressions containing only primitive terms.?

Consider now the terms used in a scientific theory. In accordance
with the distinction suggested in Chapter 6, we will think of them as
divided into two classes: theoretical terms proper, which are characteristic
of the theory, and pretheoretical, or antecedently available, terms. How
are the meanings of the theoretical terms specified? Let us note first
that just as in a purely mathematical theory, so also in a scientific one,
some of the theoretical terms can be defined by means of others. In
mechanics, the instantaneous velocity and acceleration of a point mass
are defined as the first and the second derivatives of the location of the
point mass, taken as a function of time; in atomic theory, a deuteron
can be defined as a nucleus of that isotope of hydrogen whose mass
number is 2; and so forth. But while such definitions serve an important
purpose in the formulation and use of a theory, they clearly do not suffice
to instill definite empirical content into the defined terms, and thus to
make them applicable to empirical subject matter. For that purpose, we
need statements that specify the meanings of theoretical terms by means
of expressions that are already understood and can be used without
reference to the theory. What we have called the pretheoretical terms
serve precisely this purpose. We will use the term ‘interpretative sen-
tence’ to refer to statements that thus specify the meanings of the
theoretical terms proper, or of the “characteristic terms”, of a given
theory by means of its antecedently available, or pretheoretical vocabu-
lary. Let us now examine the character of such sentences more closely.

7.2 Operational A very specific conception of the character of interpretative sen-
definitions  tences has been put forward by the operationist school of thought,
which grew out of the methodological work of the physicist P. W.
Bridgman.? The central idea of operationism is that the meaning of
every scientific term must be specifiable by indicating a definite testing
operation that provides a criterion for its application. Such criteria are
1Fuller details on this point will be found in another volume of this senes:
S. Barker, Philosophy of Mathematics, pp. 22-26, 40-41.

? Bridgman's first, and now classical, presentation is given in his book, The Logic

of Modern Physics (New York: The Macmillan Company, 1927).
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often referred to as “operational definitions”. Whether they are defini-
tions in a strict sense is a question that we shall consider later. First, we
shall look at some examples.

In an early stage of chemical inquiry, the term ‘acid’ might be
“operationally defined” as follows: in order to ascertain whether the
term ‘acid’ applies to a given liquid—i.c., whether the liquid is an acid—
insert a strip of blue litmus paper into it; the liquid is an acid if and
only if the litmus paper turns red. This criterion indicates a definite
testing operation, inserting blue litmus paper, for finding out whether
the term applies to a given liquid, and it states a specific test result (the
paper turning red) that is to count as indicating that the term applies
to the given liquid.

Similarly, the term ‘harder than’ as applied to minerals, might be
operationally characterized as follows: to determine whether mineral m,
is harder than mineral m,, draw a sharp point of a piece of m, under
pressure across the surface of a piece of m, (test operation); m, will be.
said to be harder than m, just in case a scratch is produced (specific
test result).

Some definitions that make no explicit mention of operations and
outcomes can readily be thrown into the form of an operational speci-
fication. Take this characterization of a magnet: A bar of iron or
steel is called a magnet if iron filings are attracted by its ends and cling
to them. An explicitly operationist version would read: to find out
whether the term ‘magnet’ applies to a given iron or steel bar, put iron
filings close to it. If the filings are attracted by the ends of the bar and
cling to them, the bar is a magnet.

The terms considered in our three examples—‘acid’, ‘harder than’,
‘magnet’—were here construed as standing for nonquantitative concepts;
the operational criteria, accordingly, made no provision for degrees of
acidity or hardness, or for strength of magnetization. The operationist
maxim, however, is definitely meant to apply as well to the characteriza-
tion of terms such as ‘length’, ‘mass’, ‘velocity’, ‘temperature’, ‘electric
charge’, and the like, which stand for quantitative concepts admitting of
numerical values. Here, operational definition is conceived as specifying
a procedure for determining the numerical value of the given quantity
in particular cases: operational definitions take on the character of rules
of measurement.

Thus, an operational definition of ‘length’ might specify a proce-
dure involving the use of rigid measuring rods for determining the length
of the distance between two points; an operational definition of ‘tem-
perature’ might specify how the temperature of a body—e.g., a liquid—
is to be determined by means of a mercury thermometer, and so on.

The operational procedure invoked in any operational definition
must be so chosen that it can be unequivocally carried out by any com-
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petent observer, and that the result can be objectively ascertained and
does not essentially depend on who performs the test. Thus, in defining
the term ‘aesthetic merit’ in reference to paintings, it would not be per-
missible to use this operational instruction: contemplate the painting
and note that place on a point scale from 1 to 10 that seems to you
best to indicate the beauty of the painting.

One purpose of the operationist insistence on unequivocal opera-
tional criteria of application for all scientific terms is to insure objective
testability for all scientific statements. Consider, for example, the follow-
ing hypothesis: ‘The brittleness of ice increases with decreasing tem-
perature; or more precisely, of any two pieces of ice of different tem-
perature, the one with the lower temperature is brittler than the other’
Suppose that adequate operational procedures have been specified for
determining whether a given substance is ice, and for measuring, or at
last comparing, the temperatures of different pieces of ice. Then the
hypothesis still has no clear meaning—it does not yield definite test
implications—unless clear criteria are also available for the comparison
of brittleness. The fact that such phrases as ‘brittler than’ or ‘increasing
brittleness’ seem to be intuitively clear does not suffice to make them
acceptable for scientific use. But if a clear-cut operational rule of applica-
tion for these terms is provided, the hypothesis becomes indeed testable
in the sense we considered earlier. Thus, properly chosen operational
criteria of application for a set of terms will insure the testability of the
statements in which they occur.?

Correlatively, operationists argue, the use of terms that lack opera-
tional definitions—no matter how intuitively clear and familiar they may
seem—leads to meaningless statements and questions. Thus, the claim
we considered earlier that gravitational attraction is due to an underlying
natural affinity would be declared meaningless because no operational
criteria for the concept of natural affinity have been provided. Similarly,
in the absence of operational criteria of absolute motion, the question
whether the earth or the sun (or both) are “really” moving is rejected
as a meaningless question.*

These basic ideas of operationism have exerted considerable in-
fluence on methodological thinking in psychology and the social sciences,

3 This claim is subject to certain qualifications concerning the logical form of the
statements in question, but these may be passed over in this general discussion of
operationism.

¢ In this connection, sections 3 and 4 of Chap. 13 in Holton and Roller, Founda-
tions of Modern Physical Science, provide interesting further illustrations and com-
ments. And the reader may find it stimulating to examine, from the vantage points
of operationism and of the requirement of testability, the scientific significance of
the intriguing questions that Bridgman offers for consideration near the end of
Chap. 1 of The Logic of Modern Physics.
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where great emphasis has been placed on the need to provide clear
operational criteria for terms that are to serve in hypotheses or theories.
Hypotheses such as that more intelligent people tend to be emotionally
less stable than their less intelligent fellows, or that mathematical ability
is strongly correlated with musical ability, cannot be objectively tested
unless clear criteria of application for the constituent terms are available.
A vague intuitive understanding does not suffice for the purpose, though
it may suggest ways-of specifying objective criteria.

In psychology, such criteria are usually formulated in terms of tests
(of intelligence, emotional stability, mathematical ability, and so forth).
Broadly speaking, the operational procedure consists in administering
the test according to specifications; the test results consist in the re-
sponses of the subjects tested, or, as a rule, in some qualitative or
quantitative summary or evaluation of those responses, obtained by a
procedure that may be more or less objective and more or less precise.
The evaluation of a subject’s responses in a Rorschach test, for example,
relies more heavily on the interpreter’s gradually acquired competence
in judgment and less on precise explicit criteria than does the Stanford-
Binet test for intelligence; and the Rorschach is, therefore, less satis-
factory than the Stanford-Binet, from the operationist point of view.
Some of the principal objections that have been raised against psycho-
analytic theorizing concern the lack of adequate criteria of application
for psychoanalytic terms, and the concomitant difficulties in deriving
unequivocal test implications from the hypotheses in which they
function.

The warnings thus posted by operationism have been distinctly
stimulating for the philosophical and methodological study of science.
They have also exerted a strong influence on research procedures in psy-
chology and the social sciences, But as we shall now see, a too restrictive
operationist construal of the empirical character of science has tended
to obscure the systematic and theoretical aspects of scientific concepts
and the strong interdependence of concept formation and theory
formation.

7.3 Empirical Operationism holds that the meaning of a term is fully and ex-
and systematic  clusively determined by its operational definition. Thus, Bridgman
import of says: “The concept of length is therefore fixed when the operations
scientific by which length is measured are fixed: that is, the concept of
concepts length involves as much as and nothing more than the set of
operations by which length is determined. In general, we mean

by any concept nothing more than a set of operations; the concept is
synonymous with the corresponding set of operations.” 8 This view im-

5 Bridgman, The Logic of Modern Physics, p. 5 (Bridgman’s italics).
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plies that a scientific term has meaning only within the range of those
empirical situations in which the operational procedure “defining” it can
be performed. Suppose, for example, that we develop physics from
scratch, so to speak, and introduce the term “length” by reference to
the operation of measuring the length of rectilinear distances with a
rigid measuring rod. Then no meaning has been attached to the question
‘How long is the circamference of this cylinder?’ or to statements offer-
ing an answer to it, for the operation of measuring length with straight
rigid rods is evidently inapplicable in this case. If the concept of length
is to have a definite meaning in this context, then a new and different
operational criterion must be specified. This might be done by stipulat-
ing that the circumference of a cylinder is to be measured by tightly
fitting a flexible inextensible tape around it, and then straightening the
tape and measuring its length with a rigid rod. Similarly, our initial
method of measuring length cannot be used to determine the distances
of extraterrestrial objects; and operationism tells us that if statements
about such distances are to have a definite meaning, appropriate measur-
ing operations must be specified. One of these might be an optical
method of triangulation similar to that used in surveying for the deter-
mination of certain terrestrial distances; another one might involve
bouncing back a radar signal at the extraterrestrial object and measuring
the elapsed time.

The choice of such additional operational criteria will naturally be
subject to this important condition, which might be called the require-
ment of consistency: whenever two different procedures are applicable,
they must yield the same results. For example, if the distance between
two markers on a building lot is determined by means of rigid rods and
by optical triangulation, the numerical values thus obtained should be
the same. Or suppose that a temperature scale is first “operationally
defined” by the readings of a mercury thermometer and is then to be
extended downwards by using alcohol, with its much lower freezing
point, as a thermometric liquid: then it must be made sure that, within
the range where both kinds of thermometer can be used, they give the
same readings.

But at this point, Bridgman introduces a further consideration.
The finding that, within the range of their common applicability, two
measuring operations yield the same results has the character of an
empirical generalization; hence, even if it has been borne out in careful
tests, it may conceivably be false. For this reason, Bridgman holds, it
would not be “safe” to regard the two operational procedures as deter-
mining one and the same concept: different operational criteria should
be regarded as characterizing different concepts; and these should, ideally,
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be referred to by different terms. Thus, the terms ‘tactual length’ and
‘optical length’ might be used to refer to the quantitics determined with
the help of measuring rods and of optical triangulation, respectively.
Similarly, we would have to distinguish between mercury-temperature
and alcohol-temperature.

But as we shall now see, this drastic conclusion is hardly warranted
by the supporting argument, which overemphasizes the need for an un-
equivocal empirical interpretation of scientific terms and does not take
adequate account of what we shall call their systematic import. Suppose
that, following Bridgman’s maxim, we distinguish tactual and optical
length and after careful tests, establish a putative law to the effect that
for any physical interval to which both measuring procedures are appli-
cable, the two lengths have the same numerical value. If we should
subsequently discover conditions under which the two procedures yield
different results, we would have to abandon our putative law, but we
could continue to use the terms ‘tactual length’ and ‘optical length’
without changing their meanings.

But what would the discovery of such cases of disagreement entail
if, contrary to Bridgman’s maxim, the two operational procedures were
construed as different ways of measuring one and the same quantity,
referred to simply as “length”? Since the requirement of consistency
for the two procedures would be violated, one of the criteria would have
to be abandoned: we could continue to use the term ‘length’, but with
a modified operational interpretation. :

Thus, an adjustment to discordant empirical findings could be
made in either case, either by abandoning a tentatively accepted law or
by modifying the operational interpretation of a term.

In addition—and this is a much more serious objection—it would
be difficult, indeed impossible, strictly to adhere to Bridgman’s maxim.
As a body of laws and eventually of theoretical principles is gradually
established in a field of inquiry, its concepts become linked in various
ways to each other and to previously available concepts. Such linkages
often provide quite new “operational” criteria of application. Thus, laws
linking the resistance of a metal wire to its temperature permit the
construction of a resistance thermometer; the law connecting the tem-
perature of a gas at constant pressure with its volume is the basis for
a gas thermometer; the thermoelectric effect permits the construction
of a temperature-measuring device called a thermel; an optical pyrometer
determines the temperature of very hot bodies by measuring the bright-
ness of the associated radiation they emit. Similarly, laws and theoretical
principles afford a large variety of ways for measuring distances. Thus,
the lawful decrease of barometric pressure with altitude is the basis for
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barometric altimeters in airplanes; underwater distances are frequently
measured by determining the traveling time of sound signals; small
astronomical distances are measured by optical triangulation or by radar
signals; the distance of globular star clusters and of galactic systems is
inferred, by laws, from the period and the apparent brightness of certain
variable stars in those systems. The measurement of very small distances
may involve the use, and presuppose the theory, of optical microscopes,
electron microscopes, spectrographic procedures, X-ray diffraction meth-
ods, and many others. The maxim suggested by Bridgman would oblige
us to distinguish a corresponding variety of concepts of temperature and
of length. And the lists would be far from complete; for even the use of
two barometers of somewhat differént construction, in measuring alti-
tudes—or of two different microscopes in determining the length of
bacteria—would strictly have to count as determining two different kinds,
or concepts, of length, since the operational details would differ to some
extent. Thus, the operationist maxim under discussion would oblige us
to countenance a proliferation of concepts of length, of temperature,
and of all other scientific concepts that would not only be practically
unmanageable, but theoretically endless. And this would defeat one of
the principal purposes of science; namely the attainment of a simple,
systematically unified account of empirical phenomena.

Scientific systematization requires the establishment of diverse con-
nections, by laws or theoretical principles, between different aspects of
the empirical world, which are characterized by scientific concepts.
Thus, the concepts of science are the knots in a network of systematic
interrelationships in which laws and theoretical principles form the
threads. The laws that form the basis of the different thermometric
methods illustrate some of the “nomic threads” connecting the concept
of temperature with other knot-concepts. The more threads converge
upon, or issue from, a conceptual knot, the stronger will be its systematiz-
ing role, or its systematic import. Moreover, simplicity in the sense of
economy of concepts is an important feature of a good scientific theory;
and broadly speaking, the systematic import of the concepts in a theore-
tically economic system may be said to be stronger than that of the
concepts in a less economic theory for the same subject matter.

Thus, considerations of systematic import militate strongly against
the proliferation of concepts called for by the maxim that different
operational criteria determine different concepts. And indeed, in scientific
theorizing we do not find the distinction between numerous different
concepts of length (for example), each characterized by its own opera-
tional definition. Rather, physical theory envisages one basic concept of
length and various more or less accurate ways of measuring lengths in
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different circumstances. Theoretical considerations will often indicate
within what domain a method of measurement is applicable, and with
what accuracy.

Besides, the development of a system of laws—and especially of a
theory—often leads to a modification of the operational criteria originally
adopted for some of the central concepts. For example, an operational
characterization of length will have to specify a unit of measurement,
among other things. One standard way of doing this is to designate the
distance between two marks engraved on a particular metal bar as defin-
ing the unit. But physical laws and theoretical principles then show that
the distance between the marks will vary with the temperature of the
bar and with any stresses that may affect it. To insure a uniform standard
of length, certain further conditions are therefore added to the initial
definition. The meter, for example, is defined by the distance of two
marks engraved upon the International Prototype Meter, a bar made of
platinum-iridium alloy, with a peculiar X-like cross section: the marks
are said, by definitional convention, to have a distance of one meter
when the bar is at the temperature of melting ice and is symmetrically
supported by two rollers at right angles to its length and .571 meters
apart in a horizontal plane. The peculiar cross section is designed to
insure maximal rigidity of the bar; the specifications about its mode of
support are prompted by the consideration that sagging will slightly
modify the distance between the marks; and theoretical analysis shows
the prescribed placement of the rollers to be optimal in the sense that
slight changes in their location will leave the distance of the marks
virtually unaffected.®

Let us consider one further example. One of the earliest and most
important empirical criteria for the measurement of time was provided
by the uniformities in the apparent motions of the sun and the fixed
stars: the time that elapsed between two successive appearances of a
celestial object in the same apparent position (e.g., of the sun in its
zenith position) marked a unit of time. Smaller units were “opera-
tionally” characterized by means of sundials, sand clocks, water clocks,
and later by pendulum clocks. Note that at this stage it makes no sense
to ask whether two different solar days or two different full swings of
a given pendulum “really” are of equal temporal duration. Operationism
rightly reminds us that since, at this stage, the specified criteria serve
to define equal duration, the question whether the temporal periods
marked off by them are equal can receive only the trivial answer: yes—

8 An account of the details and of the underlying theoretical considerations can
be found in Norman Feather, Mass, Length and Time (Baltimore, Maryland: Pen-
guin Books, 1961), Chap. 2.
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by definitional convention. To assert their equality is not to make a
statement of empirical fact about which we might be mistaken.

But as physical laws and theories involving the concept of time are
formulated and gradually refined, they may lead to a modification of
the initial operational criteria. Thus, classical mechanics implies that the
period of a pendulum is dependent on its amplitude; and the heliocentric
theory, which accounts for the apparent motions of celestial objects by
the daily axial rotation of the earth and its annual revolution about the
sun, implies, when combined with Newtonian theory, that different
solar days are not of equal temporal duration even if the earth rotates
at an unchanging rate. But tidal friction and similar factors give reason
to assume that the daily rotation of the earth should actually be decelerat-
ing very slowly, an assumption supported by comparing the reported
time of occurrence of certain solar eclipses in antiquity with the times
retrodictively computed from present astronomical data. Thus, the proc-
esses originally used for the measurement of time come to be treated
as affording only approximately correct measures; and eventually, new
and quite different systems—such as quartz clocks and atomic clocks—
come to be adopted, on theoretical grounds, as providing more accurate
time scales.

But how can laws or theories show the inaccuracy of the operational
criteria for the very terms in which they are formulated—criteria that
must be presupposed and used in testing the laws or theories in question?
The process might be compared to building a bridge across a river by
putting it first on pontoons or on temporary supports sunk into the
river bottom, then using the bridge as a platform for improving and
perhaps even shifting the foundations, and then again adjusting and
expanding the superstructure, in order to develop an increasingly well-
grounded and structurally sound total system. Scientific laws and theories
may be based on data obtained by means of initially adopted operational
criteria, but they will not fit those data exactly; as we have seen, other
considerations, including that of systematic simplicity, play an important
role in the adoption of scientific hypotheses. And since the laws or theo-
retical principles thus accepted are then, at least tentatively, taken to
express correctly the relations among the concepts that figure in them,
it is not to be wondered at that the initial operational criteria come to
be regarded as affording only approximate characterizations of those
concepts.

Thus, empirical import as reflected in clear criteria of application,
on which operationism rightly puts much emphasis, is not the only
desideratum for scientific concepts: systematic import is another indis-
pensable requirement—so much so that the empirical interpretation of
theoretical concepts may be changed in the interest of enhancing the
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systematic power of the theoretical network. In scientific inquiry, concept
formation and theory formation must go hand in hand.

740n One of the intriguing problems Bridgman discusses, to illustrate
"operationally the critical use of operational standards, concerns the possibility of
meaningless”  an undetectable change in the absolute scale of length. Is it not
questions  possible that all distances in the universe change steadily in such

a way that they double within every 24 hours? ? This phenomenon
could never be detected by science, since the rods used in the operational
determination of lengths would lengthen at the same rate. Bridgman
therefore declares the question meaningless: as judged by operational
standards, there would be no such universal expansion; the claim that
nevertheless it might occur—unknown to us and forever undetectable
by us—has simply no operational significance, no consequences testable
by means of measuring operations.

This appraisal has to be changed, however, when we consider that
in physics the concept of length is not used in isolation, but functions
in laws and theories that link it to various other concepts. And if the
hypothesis of universal expansion is combined with such other physical
principles, serving as auxiliary hypotheses (cf. Chapter 3), then it does
indeed yield operationally testable implications and thus is no longer
meaningless. For example, if the hypothesis is true, then the time a
sound signal takes to make the round trip between two points—say, on
the opposite shores of a lake—should double every 24 hours; and this
would be testable. But suppose we modify the hypothesis by adding the
further assumption that the velocity of acoustical and electromagnetic
signals increases at exactly the same rate as all distances? Then the new
hypothesis would still have test implications; for example, if we assume
that the universal expansion does not affect the energy output of stars
such as the sun, their brightness should decrease to one-fourth of its
initial value during any 24-hour period, since their surface would quad-
ruple during that time. Thus, the fact that a hypothesis, taken in isola-
tion, offers no possibility of operational test affords no sufhicient reason
for rejecting it as devoid of empirical content or as scientifically meaning-
less. We must, rather, consider the statement in the systematic context
of the other laws and hypotheses in which it is to function, and we must
examine the test implications to which it may then give rise. This
procedure will by no means qualify as meaningful all hypotheses that
might be proposed; among others, the hypotheses about vital forces
and about universal natural affinities, discussed earlier, would still be
excluded.

? This formulation is slightly more specific than Bridgman's {on p. 28 of The
Logic of Modern Physics), but it involves no change in the crucial points.
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7.5The Our consideration of operationism was prompted by the thought
character of  that if a theory is to be applicable to empirical phenomena, its
interpretative  characteristic terms will have to be suitably interpreted with the
sentences  help of an antecedently available, pretheoretical vocabulary. Our
discussion has shown that the operationist conception of such an
interpretation provides helpful suggestions but requires considerable mod-
ifications. In particular, we have to reject the notion that a scientific
concept is “synonymous” with a set of operations. For, first, there may
be—and there usually are—several alternative criteria of application for
a term; and these are based on different sets of operations. Second,
in order to understand the meaning of a scientific term and to use it
properly, we have to know also its systematic role, indicated by the
theoretical principles in which it functions and which connect it with
other theoretical terms. Third, a scientific term cannot be considered
“synonymous with” a set of operations in the sense of having its meaning
fully determined by them; for as we have seen, any one set of testing
operations affords criteria of application for a term only within a limited
range of conditions. Thus, the operations of using a measuring rod or
a thermometer provide only partial interpretations for the terms ‘tem-
perature’ and ‘length’; for each is applicable only within a limited range

of circumstances.

While in this respect operational criteria say less than would be
required of a full definition, there is another respect in which they say
more—indeed too much to constitute definitions in the usual under-
standing. Ordinarily, a stipulative. definition is conceived as a sentence
that introduces a convenient term or abbreviatory symbol by simply
specifying its meaning—without adding any factual information. But
two operational criteria for one and the same term do have empirical
implications if, as is often the case, their ranges of application overlap.
This follows from our earlier observations about the requirement of con-
sistency for alternative operational criteria. If different test procedures
are adopted as criteria of application for one and the same term, it fol-
lows from the statements of those criteria that in cases where more than
one of the test procedures are applicable, the procedures will yield the
same result; and this implication has the character of an empirical
generalization. The statement we considered earlier, expressing the nu-
merical equality of “optical” and “tactual” length in all cases where
both measuring procedures can be used, is an example. Another one is
the statement that within the range where both mercury and alcohol
are liquid, the temperature readings of mercury thermometers and of
alcohol thermometers are numerically equal. This statement is a con-
sequence of the stipulation that either kind of thermometer may be
used in the operational determination of temperatures. In sum, then,
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interpretative sentences providing criteria of application for scientific
terms frequently combine the stipulative function of a definition with
the descriptive function of an empirical generalization.

There is yet another interesting and important respect in which
interpretative sentences differ from definitions in the sense we considered
earlier. Scientific terms are often used only in locutions or phrases of
some characteristic form; for example, the concept of hardness as char-
acterized by the scratch test is meant to serve only in expressions of the
form ‘mineral m, is harder than mineral m,;’, and in other phrases that
are definable by means of such expressions. In such cases, it is sufficient
to have an interpretation for those characteristic expressions. In our
example, such an interpretation is provided by the scratch test, which
gives an empirical meaning to ‘m, is harder than m,’ but not to the
term ‘hardness’ by itself, nor to such expressions as ‘mineral m is hard’
or ‘the hardness of mineral m is so and so much’.

Statements that fully specify the meaning of a particular context
containing a given term are called contextual definitions, in contradistinc-
tion to so-called explicit definitions, such as: ‘Acid’ is to have the same
meaning as ‘electrolyte that furnishes hydrogen ions’. Analogously, we
may say, then, that intepretative sentences for a scientific theory usually
provide contextual interpretations for theoretical terms. The various
ways of measuring length, for example, do not interpret the term ‘length’
by itself, but only such phrases as ‘the length of the distance between
points A and B’ and ‘the length of line I’; criteria for the measurement
of time do not explicate the concept of time in general; and so forth.
In the case of some theoretical concepts, only very special, and rather
restricted, contexts may permit of an interpretation that affords a basis
for experimental test. Take such terms as ‘atom’, ‘electron’, ‘photon’.
It is indeed possible to give a theoretical definition of the term ‘electron’,
i.e, one that makes use of other .theoretical terms (‘electron’ means
‘elementary particle of rest mass 9.107 X 10-*® g, charge 4.802 X 10-*°
statcoulomb, and a spin of one-half unit'); but what could an operational
definition of the term be like? Surely, we cannot expect to be given
operational rules for determining whether the word ‘electron’ applies to
a given object—i.e, whether that object is an electron. What can be
formulated, however, are contextual interpretations for certain kinds of
statement containing the term ‘electron’, such as these: ‘there are elec-
trons on the surface of that insulated metal sphere’; ‘electrons are escap-
ing from this electrode’; ‘this condensation track in the cloud chamber
marks the path of an electron’, and the like. Analogous remarks apply
to the concepts of electric and magnetic field. Operational criteria can
be formulated for ascertaining the structure of such fields and their
strength in given areas; such criteria will refer to the behavior of probes,
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to the paths of particles moving in the field, to the flow of currents in
wires moving through the field, and so on. But such tests will be available
only for certain special, experimentally favorable kinds of field condi-
tions, such as a homogeneous field in a sufficiently large area, or strong
gradients over certain distances, or the like; a statement expressing some
theoretically possible, but highly intricate field condition (involving,
perhaps, strong changes over very short distances) may have no specific
“operationally testable” implications.

It should now be clear that the terms of a scientific theory cannot
properly be thought of as having, each, a finite number of specific opera-
tional criteria, or more generally, of interpretative statements attached
to them. For interpretative statements are thought to determine ways in
which sentences containing the interpreted term may be tested; ie.,
when combined with such sentences, they are to yield test implications
for them, couched in terms of an antecedently available vocabulary.
Thus, the operational interpretation of hardness by means of the scratch
test permits the derivation of test implications from sentences of the
form ‘m, is harder than m,’; the interpretation based on the litmus test
does the same for sentences of the form ‘liquid [ is an acid’, and so forth.
Now the various ways in which (or test implications by which) sentences
containing the terms of a scientific theory can be tested will be determined
by the bridge principles of the theory. These principles, as we noted in

- Chapter 6, connect the characteristic entities and processes assumed by
the theory with phenomena that can be described in pretheoretical terms;
and thus they link the theoretical terms to antecedently understood ones.
But those principles do not assign to a theoretical term some finite
number of criteria of application. Consider once more the term ‘electron’.
We noted that not every sentence containing this term will have definite
test implications assigned to it. Yet the sentences containing the term
which do yield test implications are of unlimited diversity, and the cor-
responding diversity of tests cannot without arbitrariness be considered
as conforming to just two, or seven, or twenty different criteria of applica-
tion for the term ‘electron’. Here, then, the conception of the terms of a
theory being individually interpreted by a finite number of operational
criteria has to be abandoned in favor of the idea of a set of bridge
principles that do not interpret the theoretical terms individually, but
provide an indefinite variety of criteria of application by determining an
equally indefinite variety of test implications for statements containing
one or more of the theoretical terms.
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THEORETICAL REDUCTION

8

81The  We considered earlier the neovitalistic doctrine that certain char-

mechanism-  acteristics of living systems—among them their adaptive and self-

vitalism  regulating features—cannot be explained by physical and chemical

issue  principles alone, But have to be accounted for by reference to new

factors, of a kind not known in the physical sciences, namely

entelechies or vital forces. Closer consideration showed that the concept

of entelechy as used hy neovitalists cannot possibly provide an explana-

tion of any biologicar phenomenon. The reasons that led us to this

conclusion do not, however, automatically dispose of the basic neo-

vitalistic idea that biological systems and processes differ in certain

fundamental respects from purely physico-chemical ones. This view is

opposed by the so-called mechanistic claim that living organisms are

nothing else than very complex physico-chemical systems (though not,

as the old-fashioned term ‘mechanism’ would suggest, purely mechanical

ones). These conflicting conceptions have been the subject of an exten-

sive and heated debate, whose details we cannot consider here. But

evidently, the issue can be fruitfully discussed only if the meaning of

the opposing claims can be made sufficiently clear to show what sorts

of argument and evidence can have a bearing on the problem and how

the controversy might be settled. It is this characteristically philosophical

problem of clarifying the meanings of the conflicting conceptions that

we shall now consider; the result of our reflections will also have certain
implications concerning the possibility of settling the issue.

Ostensibly; the controversy concerns the question whether or not

living organisms are “merely”, or exclusively, physico-chemical systems.

But just what would it mean to say that they are? Our introductory
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remarks suggest that we might construe the doctrine of mechanism as
making this twofold claim: (M, ) all the characteristics of living organisms
are physico chemical characteristics--they can be fully described in terms
of the concepts of physics and chemistry; (M,) all aspects of the be-
havior of living organisms that can be explained at all can be explained
by means of physico-chemical laws and theories.

As for the first of these assertions, it is clear that at present, at any
rate, the description of biological phenomena requires the use not only
of physical and chemical terms, but of specifically biological terms that
do not occur in the physico-chemical vocabulary. Take the statement that
in the first stage of mitosis, there occurs, among other things, a contrac-
tion of the chromosomes in the nucleus of the dividing cell; or take the
much less technical statement that a fertilized goose egg, when properly
hatched, will yield a gosling. Thesis M, implies that the biological
entities and processes here referred to—goslings, goose eggs, cells, nuclei,
chromosormes, fertilization, and mitosis—can all be fully characterized
in physico-chemical terms. The most plausible construal of this claim is
that the corresponding biological terms, ‘gosling’, ‘eell’, etc., can be
defined with the help of terms taken from the vocabulary of physxcs and
chemistry. Let us refer to this more specific version of M, as M,
Similarly, if all biological phenomena—and thus, in particular, all the
uniformities expressed by biological laws—are to be explainable by means
of physico-chemical principles, then all the laws of biology will have to
be derivable from the laws and theoretical principles of physics and
chemistry. The thesis—let us call it M’,—t&at this is indeed the case may
be regarded as a more specific version of M,,

Jointly, the statements M’, and M’, express what is often called
the thesis of reducibility of biology to physics and chemistry. This thesis
concerns both the concepts and the laws of the disciplines concerned:
reducibility of the concepts of one discipline to those of another is con-
strued as definability of the former in terms of the latter; reducibility
of the laws is analogously construed as derivability. Mechanism may thus
be said to assert the reducibility of biology to physics and chemistry.
The denial of this claim is sometimes referred to as the thesis of the
autonomy of biology or, better, of biological concepts and principles.
Neovitalism thus affirms the autonomy of biology and supplements this
claim with its doctrine of vital forces. Let us now consider the mech-
anistic theses in more detail.

8.2 Reduction  The thesis M, concerning the definability of biological terms is
of terms  not meant, of course, to assert the possibility of assigning physico-
chemical meanings to biological terms.: by arbitrary stipulative

definitions. It takes for granted that the terms in the vocabulary of
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biology have definite technical meanings but claims that, in a sense
we must try to clarify, their import can be adequately expressed with
the help of physical and chemical cancepts. The thesis, then, affirms the
possibility of giving what, in Chapter 7, we broadly called “descriptive
definitions” of biological concepts in physico-chemical terms. But the
definitions in question could hardly be expected to be analytic. For it
would obviously be false to claim that for every biological term—for
example, ‘goose egg’, ‘retina’, *‘mitosis’, ‘virus’, ‘hormone’—there exists
an expression in physico-chemical terms that has the same meaning in
the sense in which ‘spouse’ may be said to have the same meaning as,
or to be synonymous with, ‘husband or wife’. It would be very difficult
to name even one biological term for which a physico-chemical synonym
can be specified; and it would be preposterous to saddle mechanism
with this construal of its claim. But descriptive definition may also be
understood in a less stringent sense, which does not require that the
definiens have the same meaning, or intension, as the definiendum, but
only that it have the same extension or application. The definiens in
this case specifies conditions that, as a matter of fact, are satisfied by all
and only those instances to which the definiendum applies. A traditional
example is the definition of ‘man’ by ‘featherless biped’; it does not assert
that the word ‘man’ has the same meaning as the expression ‘featherless
biped’, but only that it has the same extension, that the term ‘man’
applies to all and only those things that are featherless bipeds, or that
being a featherless biped is. both a necessary and a sufficient condition
for being a man. Statements of this kind might be referred to as
extensional definitions; they can be schematically expressed in the form

has the same extension as — — —

The definitions to which a mechanist might point to illustrate and
support his claim concerning biological concepts are of this extensional
type: they express necessary and sufficient physico-chemical conditions
for the applicability of biological terms, and they are therefore the
results of often very difficult biophysical or biochemical research. This
is illustrated by the characterization of substances such as penicillin,
testosterone, and cholesterol in terms of their molecular structures—an
achievement that permits the “definition” of the biological terms by
means of purely chemical ones. But such definitions do not purport to
express the meanings of the biological terms. The original meaning of
the word ‘penicillin’, for example, would have to be indicated by char-
acterizing penicillin as an antibacterial substance produced by the fungus
penicillium notatum; testosterone is originally defined as a male sex
hormone, produced by the testes; and so forth. The characterization of
these substances by their molecular structure is arrived at, not by mean-
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ing analysis, but by chemical analysis; the result constitutes a biochemical
discovery, not a logical or philosophical one; it is expressed by empirical
laws, not by statements of synonymy. In fact, acceptance of the chemical
characterizations as new definitions of the biological terms involves a
change not only in meaning or intension, but also in extension. For the
chemical criteria qualify as penicillin or as testosterone certain substances
that were not produced by organic systems, but were synthesized in a
laboratory. .

At any rate, however, the establishment of such definitions requires
empirical research. We must conclude therefore that, in general, the
question whether a biological term is “definable” by means of physical
and chemical terms alone cannot be settled by just contemplating its
meaning, nor by any other nonempirical procedure. Hence, the' thesis
M, cannot be established or refuted on a priori grounds, i.e., by con-
siderations that can be developed “prior to”—or better, independently
of—empirical evidence.

8.3 Reduction = We turn now to the second thesis, M’,, in our construal of mecha-
oflaws  nism—the thesis asserting that the laws and theoretical principles
of biology are derivable from those of physics and chemistry, It

is clear that logical deductions from statements couched exclusively in
physical and chemical terms will not yield characteristically biological
laws, since these have to contain also specifically biological terms.? To
obtain such laws, we will need some additional premisses that express
connections between physico-chemical characteristics and biological ones.

The logical situation here is the same as in the explanatory use of a
theory, where bridge principles are required, in addition to internal
theoretical prirciples, for the derivation of consequences that can be
expressed exclusively in pretheoretical terms. The additional premisses
required for the deduction of biological laws from physico-chemical ones
would have to contain both biological and physico-chemical terms and
would have the character of laws connecting certain physico-chemical

It might seem obvious that the consequences logically deducible from a set of
premisses cannot contain any “new” terms, ie., terms that do not occur in the
premisses. But this is not so. The Yhysical statement ‘When a gas is heated under
constant pressure, it expands’ logically implies ‘When a gas is heated under constant
pressure, it expands or tumns into a swarm of mosquitoes.’ In this manner, then,
biological statements are deducible from physical ones alone. But the same physical
premiss also permits the deduction of the statements ‘“When a gas is heated under
constant pressure, it expands or does not tum into 2 swarm of mosquitoes’; “When
a gas heated under constant pressure, it expands or turns into a rabbit’, and so on.
Generally, any biclogical statement that can be deduced from the given physical
law has this peculiarity: if the specifically biological terms oocum:ig in 1t are replaced
by their negates or by any other terms, the sentence thus obtained is equally deduci-
ble from the physical law. In this sense, the physical faw fails to offer an explanation
for any speci(?c biological phenomenon.
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aspects of a phenomenon with certain biological ones. A connective
statement of this kind might take the special form of the laws we have
just considered, -which afford a basis for an extensional definition of
biological terms. Such a statement asserts, in effect, that the presence of
certain physico-chemical characteristics (€.g., a substance being of such
and such a molecular structure) is both necessary and sufficient for the
presence of a certain biological characteristic (e.g., being testosterone).
Other connective statements might express physico-chemical conditions
that are necessary but not sufficient, or conditions that are sufficient but
not necessary, for a given biological characteristic. The generalizations
‘where there is vertebrate life there is oxygen’ and ‘any nerve fiber con-
ducts electric impulses” are of the former kind; the statement that the
nerve gas tabun (characterized by its molecular structure) blocks nervous
activity and thus causes death in man is of the second kind. Connective
statements of various other types are also conceivable.

One very simple form that the derivation of a biological law from
a physico-chemical one might take can be schematically described as
follows: Let ‘P;’, ‘P,” be expressions containing only physico-chemical
terms, and let ‘B’ ‘B,’ be expressions containing one or more specifically
biological terms (and possibly physico-chemical ones as well). Let the
statement ‘all cases of P, are cases of P,’ be a physico-chemical law—we
will call it Lp—and let the following connecting laws be given: ‘All cases
of B, are cases of P,’ and ‘All cases of P, are cases of B,” (the first states
that physico-chemical conditions of kind P, are necessary for the occur-
rence of the biological state or condition B,; the second, that physico-
chemical conditions P, are sufficient for biological feature B,). Then,
as is readily seen, a purely biological law can be logically deduced from
the physico-chemical law Lg in conjunction with the connecting laws;
namely, ‘all cases of B, are cases of B,’ (or: “‘Whenever the biological
features B, occur then so do the biological features B,').

Generally, then, the extent to which biological laws are explainable
by means of physico-chemical laws depends on the extent to which
suitable connecting laws can be established. And that, again, cannot be
decided by a priori argumnents; the answer can be found only by biological
and biophysical research.

8.4 Mechanism The physical and chemical theories and the connecting laws
restated  available at present certainly do not suffice to reduce the terms

and laws of biology to those of physics and chemistry. But research

in the field is rapidly advancing and is steadily expanding the reach of

a physico-chemical interpretation of biological phenomena. One might

therefore construe mechanism as the view that in the course of further

scientific research, biology will eventually come to be reduced to physics
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and chemistry. But this formulation calls for a word of caution. In our
discussion, we have assumed that a clear distinction ¢an be drawn be-
tween the terms of physics and chemistry on one hand and specifically
biological terms on the other. And indeed, if we were presented with
any scientific term currently in use, we would probably not find it diffi-
cult to decide in an intuitive fashion whether it belonged to one or to
the other of those vocabularies or to neither., But it would be very
difficult to formulate explicit general criteria by means of which any
scientific term now in use, and also any term that might be introduced
in the future, could be unequivocally assigned to the specific vocabulary
of one particular discipline. Indeed, it may be impossible to give such
criteria. For in the course of future research, the dividing line between
biology and physics-and-chemistry may become as blurred as that be-
tween physics and chemistry has become in our time. Future theories
might well be couched in novel kinds of terms functioning in compre-
hensive theories that afford explanations both for phenomena now catled
biological and for others now called physical or chemical. To the vocab-
ulary of such a comprehensive unifying theory, the division into physico-
chemical terms and biological terms might no longer be significantly
applicable, and the notion of eventually reducing biology to physics
and chemistry would lose its meaning.

Such a theoretical development, however, is not at hand as yet;
and in the meantime, mechanism is perhaps best construed, not as a
specific thesis or theory about the character of biological processes, but
as a heuristic maxim, as a principle for the guidance of research. Thus
understood, it enjoins the scientist to persist in the search for basic
physico-chemical theories of biological phenomena rather than resign
himself to the view that the concepts and principles of physics and
chemistry are powerless to give an adequate account of the phenomena
of life. Adherence to this maxim has certainly proved very successful in
biophysical and biochemical research—a credential that cannot be
matched by the vitalistic view of life.

8.5 Reduction  The question of reducibility has been raised also for scientific
of psychology;  disciplines other than biology. It is of particular interest in the
behaviorism  case of psychology, where it has a direct bearing on the famous
psycho-physical problem, ie., the question of the relationship be- ™
tween mind and body. A reductionist view concerning psychology holds,
roughly speaking, that all psychological phenomena are basically bio-
logical or physico-chemical in character; or more precisely, that the
specific terms and laws of psychology can be reduced to those of biology, -
chemistry, and physics. Reduction is here to be understood in the sense
defined earlier, and our general comments on the subject apply also to
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the case of psychology. Thus, the reductive “definition” of a psycho-
logical term would require the specification of biological or physico-
chemical conditions that are both necessary and sufficient for the oc-
currence of the mental characteristic, state, or process (such as, intelli-
gence, hunger, hallucination, dreaming) for which the term stands. And
the reduction of psychological laws would require suitable connecting
principles containing psychological terms as well as biological or physico-
chemical ones.

Some such connecting principles, expressing sufhicient or necessary
conditions for certain psychological states are indeed available: depriving
an individual of food or drink or opportunity for rest is sufficient for
the occurrence of hunger, thirst, fatigue; the administration of certain
drugs is perhaps sufficient for the occurrence of hallucinations; the
presence of certain nerve connections is necessary for the occurrence of
certain sensations and for visual perception; proper oxygen supply to the
brain is necessary for mental activity and indeed for consciousness.

One especially important class of biological or physical indicators
of psychological states and events consists in the publicly observable
behavior of the individual to whom those states or events are ascribed.
Such behavior may be understood to include both large-scale, directly
observable manifestations, such as body movements, facial expressions,
blushing, verbal utterances, performance of certain tasks (as in psycho-
logical tests), and subtler responses such as changes in blood pressure
and heartbeat, skin conductivity, and blood chemistry. Thus, fatigue
may manifest itself in speech utterances (“I feel tired”, etc.), in a
decreasing rate and quality of performance at certain tasks, in yawning,
and in physiological changes; certain affective and emotional processes
are accompanied by changes in apparent skin resistance, as measured
by “lie detectors”; the preferences and values a person holds express
themselves in the way he responds when offered certain relevant choices;
his beliefs, in verbal utterances that may be elicited from him, and also
in the ways he acts—for example, a driver’s belief that a road is closed
may show itself in his taking a detour.

Certain characteristic kinds of “overt” (publicly observable) be-
havior that a subject in a given psychological state, or with a given
psychological property, tends to manifest in appropriate “stimulus” or
“test” situations are widely used in psychology as operational criteria
for the presence of the psychological state or property in question. For
intelligence or for introversion, the test situation might consist in pre-
senting the subject with appropriate questionnaires; the response, in the
answers the subject produces. The intensity of an animal’s hunger drive
will manifest itself in such behavioral features as salivation, the strength
of the electric shock that the animal will take to reach food, or the
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amount of food it consumes. To the extent that the stimuli and the
responses can be described in biological or physicochemical terms, the
resulting criteria may be said to afford partial specifications of meaning
for psychological expressions in terms of the vocabularies of biology,
chemistry, and physics. Though they are often referred to as operational
definitions, they do not actually determine necessary and sufficient
conditions for the psychological terms: the logical situation is quite
similar to the one we encountered in examining the relation of biological
terms to the physical and chemical vocabulary.

Behaviorism is an influential school of thought in psychology
which, in all its different forms, has a basically reductionist orientation;
in a more or less strict sense, it seeks to reduce discourse about psycho-
logical phenomena to discourse about behavioral phenomena. One
form of behaviorism, which is especially concerned to ensure the ob-
jective public testability of psychological hypotheses and theories, in-
sists that all psychological terms must have clearly specified criteria of
application couched in behavioral terms, and that psychological hy-
potheses and theories must have test implications concerning publicly
observable behavior. This school of thought rejects, in particular, all
reliance on methods such as introspection, which can be used only by the
subject himself in a phenomenalistic exploration of his mental world;
and it does not admit as psychological data any of the “private” psycho-
logical phenomena—such as sensations, feelings, hopes, and fears—that
introspective methods are said to reveal.

‘While behaviorists are agreed in their insistence on objective be-
havioral criteria for psychological characteristics, states, and events, they
differ (or are noncommittal) on the question whether or not psycho-
logical phenomena are distinct from the comresponding, often very
subtle and complex, behavioral phenomena—whether the latter are only
their public manifestations, or whether psychological phenomena are, in
some clear sense, identical with certain complex behavioral properties,
states, or events. One recent version of behaviorism, which has exerted a
strong influence on the philosophical analysis of psychological concepts,
holds that psychological terms, though ostensibly referring to mental
states and to processes “in the mind”, serve, in effect, simply as a means
of speaking about more or less intricate aspects of behavior—specifically,
about propensities or dispositions to behave in characteristic ways in
certain situations. On this view, to say of a person that he is intelligent
is to say that he tends to act, or has a disposition to act, in certain
characteristic ways; namely, in ways that we would normally qualify as
intelligent action under the circumstances. To say of someone that he
speaks Russian is not to say, of course, that he constantly utters Russian
expressions, but that he is capable of a specific kind of behavior that
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shows itself in particular situations and that is generally considered
characteristic of a person who understands and speaks Russian. Thinking
of Vienna, being fond of jazz, being honest, being forgetful, seeing
certain things, having certain wants can all be viewed in a similar way.
And viewing them in this manner—so this form of behaviorism holds—
disposes of the baffling aspect of the mind-body problem: there is then
no point any more to searching for the “ghost in the machine”,? for
the mental entities and processes that go on “behind” the physical fagade.
Consider an analogy. Of a watch that keeps time very well we say
that it has a very high accuracy; to ascribe high accuracy to it is tanta-
mount to saying that it tends to keep time well. It makes no sense,
therefore, to ask in what manner that nonsubstantial agency, the ac-
curacy, acts upon the mechanism of the clock; nor does it make sense
to ask what happens to the accuracy when the clock stops running.
Similarly, on this version of behaviorism, it makes no sense to ask
how mental events or characteristics affect the behavior of an organism.
This conception, which has contributed greatly to clarifying the
role of psychological concepts, is evidently reductionist in tenor; it
presents the concepts of psychology as affording an effective and con-
venient way of speaking about subtle patterns of behavior. The support-
ing arguments, however, do not establish that all the concepts of psy-
chology are actually definable in terms of nonpsychological concepts of
the kind required to describe overt behavior and behavioral dispositions;
and this for at least two reasons. First, it is very doubtful that all the
different kinds of situation in which a person could “act intelligently”
(for example), and the particular kinds of action that would qualify as
intelligent in each of those situations, could be encompassed in a clear-
cut, fully explicit definition. Second, it seems that the circumstances
under which, and the manner in which, intelligence or courage or spite-
fulness can manifest themselves in overt behavior cannot be adequately
stated in terms of a “purely behavioristic vocabulary”, which might con-
tain biological, chemical, and physical terms as well as nontechnical
expressions of our everyday language, such as ‘shaking one’s head’,
‘stretching out one’s hand’, ‘wincing’, ‘grimacing’, laughing’, and the
like: it seems that psychological terms are needed as well to characterize
the kinds of behavior patterns, or behavioral dispositions and capacities,
that such terms as ‘tired’, ‘intelligent’, ’knows Russian’ presumably indi-
cate. For whether an agent's overt behavior in a given situation qualifies
as intelligent, courageous, foolhardy, courteous, rude, etc., will not simply

2 This phrase was coined by Gilbert Ryle, whose stimulating and influential book,
The Concept of Mind (London: Hutchinson, 1949) develops in detail a conception
of psychological phenomena and psychological locutions that is behavioristic in the
sense here briefly sketched.
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depend on what the facts of the situation are, but very importantly on
what the agent knows or believes about the situation in which he finds
himself. A man who walks unflinchingly toward a thicket where a
hungry lion is crouching is not acting courageously if he does not be-
lieve (and hence does not know) that there is a lion in the thicket.
Similarly, whether a person’s behavior in a given situation qualifies as
intelligent will depend on what he believes about the situation and
what objectives he wants to attain by his action. Thus, it appears that
in order to characterize the behavioral patterns, propensities, or capaci-
ties to which psychological terms refer, we need not only a suitable
behavioristic vocabulary, but psychological terms as well. This considera-
tion does not prove, of course, that a reduction of psychological terms to
a behavioristic vocabulary is impossible, but it does remind us that the
possibility of such a reduction has not been established by the kind of
analysis we have considered.

Another discipline to which it has been thought that psychology
might eventually be reduced is that of physiology, and especially neuro-
physiology; but again, a full reduction in the sense we specified earlier
is not remotely in sight.

Questions of reducibility arise also with respect to the social
sciences, particularly in connection with the doctrine of methodological
individualism,® according to which all social phenomena should be de-
scribed, analyzed, and explained in terms of the situations of the
individual agents involved in them and by reference to the laws and
theories concerning individual behavior. The description of an agent’s
“situation” would have to take into account his motives and beliefs as
well as his physiological state and various biological, chemical, and
physical factors in his environment. The doctrine of methodological
individualism may therefore be viewed as implying the reducibility of the
specific concepts and laws of the social sciences (in a broad sense, includ-
ing group psychology, the theory of economic behavior, and the like) to
those of individual psychology, biology, chemistry, and physics. The
problems raised by this claim fall outside the scope of this book. They
belong to the philosophy of the social sciences and have been mentioned
here simply as a further illustration of the problem of theoretical
reducibility and as an example of the many logical and methodological
affinities between the natural and the social sciences.

3 A lucid discussion of this doctrine can be found in E. Nagel, The Structure of
Science, pp. 535-46.
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