
Making More Sense out of Users’ Utterances

Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio
R. Marquês de São Vicente, 225 – Gávea
Rio de Janeiro – RJ – Brasil – 22453-900

+55 (21) 512-2299 ext.3404
sim@les.inf.puc-rio.br

Clarisse Sieckenius de Souza
Departamento de Informática – PUC-Rio
R. Marquês de São Vicente, 225 – Gávea
Rio de Janeiro – RJ – Brasil – 22453-900

+55 (21) 512-2299 ext.4344
clarisse@inf.puc-rio.br

RESUMO
Este artigo trata de aplicações extensíveis sob uma
perspectiva comunicativa. Nossa abordagem traz para a
interface mecanismos poderosos de interpretação, que
utilizam modelos do domínio e da aplicação para atribuir
significado a enunciados não literais, para explicar como
este significado foi alcançado e qual seria a expressão
literal equivalente. Estes mecanismos geram, através de
um processo de raciocínio abdutivo, metáforas e
metonímias que podem explicar os enunciados dos
usuários e ajudá-los a expressar suas intenções. Desta
forma, também podem ser utilizados para ajudar os
usuários a atingir dois objetivos: compreender os modelos
subjacentes do domínio e da aplicação, se os mecanismos
forem combinados com explicações; e obter uma forma
mais eficiente de comunicação, com refinamentos
retóricos, como destacar alguns aspectos de objetos e não
outros.

Palavras chave
Engenharia Semiótica, Interação Humano–Computador,
Metáfora, Metonímia, Raciocínio Abdutivo.

ABSTRACT
This article addresses extensible applications from a
communicative perspective. Our approach brings to the
user interface powerful interpretation mechanisms, that
make use of domain and application models to assign
meaning to non-literal user input, to explain to users how
this meaning was reached and what is the corresponding
literal expression. These mechanisms do so by an
abductive process of generating volatile metaphors and
metonymies that may explain users’ input and help express
users’ intentions. In this way, they can also be used to help
users achieve two goals. First, to understand the
underlying domain and application models, if combined
with explanations. The other is a more efficient way of
communication that can serve rhetorical purposes such as
focusing on some aspects of objects and not others.

Keywords
Semiotic Engineering, Human–Computer Interaction,
Metaphor, Metonymy, Abductive Reasoning.

1. INTRODUCTION

Academia and industry alike have recognized the need to
create extensible software in order to allow users to
configure applications and make the best use of them for
their particular purposes (Eisenberg, 1995; DiGiano and
Eisenberg, 1995; Myers, 1992; Nardi, 1993; Barbosa et al.,
1999). Nevertheless, most extension mechanisms proposed
have focused primarily on automation of repetitive tasks
using different techniques, such as macro recording,
programming by demonstration (Cypher, 1993), or script
and programming languages. Moreover, these approaches
require that users understand how to get the task done in
the first place.

We need to provide support for users to understand how to
do a certain task, before trying to automate it. We do this
by adopting a Semiotic Engineering perspective (de Souza,
1993; de Souza, 1999). According to de Souza, an
application is a one-shot message to users, about how to
send and receive other messages. It is a peculiar kind of
message, because it is itself an artifact than can send and
receive messages to users, and the messages it sends are
exactly the same every time they are emitted under the
same context and set of circumstances.

By following Semiotic Engineering principles (de Souza,
1999), we maximize the chances of effectively
communicating the designer’s interpretations and
assumptions to users. In an extensible application, this is
critical because users will assume the role of designers,
albeit limited, and create new meanings in the application.
Therefore, such an application must be designed for
communicating knowledge relevant to the design task as
well.

Our approach will not provide fully extensible
applications, but instead a particular kind of volatile
extension mechanism, that we call extension by
interpretation (Barbosa, 1999). This mechanism allows
users to utter metaphorical or metonymic expressions
through the interface, then tries to make sense of this
utterance and come up with a result by performing a task.
This sense-making is in fact an abductive process (Peirce,
1931; Hintikka, 1997) of generating possible
interpretations by means of metaphorical and metonymic
operators.

This approach constitutes an extension in the sense of
creating new meanings, but it does not involve a
programming activity that would result in a permanent or
persistent extension to the application. This raises an
important issue: users’ extensions to the application are
generally persistent, and cannot be removed except by an
explicit and sometimes obscure command triggered by the
user. Since extensible applications may provide little or no
disclosure about what the extensions actually mean and
accomplish, persistence becomes a very dangerous feature,
because it may turn a simple localized mistake into a
permanent one.

One alternative would be to try to maximize users’
understanding of the extensions they make, by
progressively disclosing the commands and programming
structures involved (DiGiano and Eisenberg, 1995;
DiGiano, 1996). Our approach goes one step further and
allows users to add new meanings through metonymic or
metaphorical expressions that hold only in particular
situations. But we also allow users to make more
permanent extensions with the support of interactive
dialogs, such as wizards. In this latter case, all the
underlying models of the application are communicated to
users in more detail.

2. ANALOGICAL REASONING
Many researchers in the field of Cognitive Science agree
that we humans think and express ourselves in non-literal
ways (Lakoff and Johnson, 1980; Lakoff, 1987; Ortony,
1993). In particular, we make use of metaphors and
metonymies in order to understand or explain a concept in
terms of others, by highlighting a concept’s characteristics
or relations, and hiding others. It is also known that, in
order to effectively use this kind of figurative language in
our communication, it is necessary for sender and receiver
to share some knowledge, assumptions, and culture
(Lakoff and Johnson, 1980).

When it comes to Computer Science, it is necessary to
establish the designer’s knowledge and assumptions and
communicate them to users using some representation
language and some user interface language (Barbosa et al.,
1998; da Silva et al., 1997). A balance must be found
between the interface language, which users must
understand and in which they have to express themselves,
and the application language(s) the machine is able to
interpret and process.

It is impossible to represent in a software application all
common sense that arises from our experience as humans
interacting with the world, in order to provide mechanisms
to interpret every known kind of metaphor. Nevertheless,
users should not expect computer applications to behave
like partners in a natural communicative process, where
speaker and hearer can negotiate meaning until some
convergence is reached. Instead, they should be aware that
they are interacting with an artificial artifact created by a

human designer, who represented in it some of this
knowledge and assumptions about the application domain
and users’ needs (de Souza, 1996).

As Nardi points out, dealing with artificial languages per
se is not the problem (Nardi, 1993). She states that the
problem is with the languages people are expected to
understand. We believe another great problem lies in the
lack of knowledge about the application and domain
models, which must be correctly understood in order to
successfully interact with the application. However, when
first interacting with an application, users typically do not
have a complete and precise model of it (except those who
participated throughout the application development
process). One of the major usability challenges is to reduce
the time necessary to learn to use an application (Nielsen,
1993; Preece, 1994). Our approach helps to follow this
direction, not by describing some more user interface
design principles, but by enhancing the representation of
domain and application models, and providing abductive
mechanisms for metaphorical and metonymic
interpretation.

Why would users want to express themselves
metaphorically or metonymically? Well, maybe they
wouldn’t, if they knew how not to! The point is, people are
seldom aware of their use of metaphors, unless they are
really going for a poetic effect (Jakobson, 1960). We
sometimes make use of metaphorical expressions just
because we understand a concept in terms of another that
is familiar to us. By means of our interpretation
mechanism, when a user has interacted with a portion of
the application and made up a partial conceptual model of
it, he or she will be able to refer to this known portion
when trying to get things done somewhere else in the
application.

When Halasz and Moran made their case against using
analogies (Halasz and Moran, 1982), they were right about
the dangers of “globalizing” a local analogy, i.e., take an
analogy that holds for a particular situation and
considering it valid throughout an application or a domain.
The distinct feature of our model that avoids this problem
is the volatility of extensions made during the
interpretation of users’ utterances. This volatility ensures
that a metaphorical or metonymic expression will only be
considered valid in the context where it was issued.

After several sessions of interaction with the application,
patterns of occurrence of particular kinds of metaphorical
and metonymic expressions may arise, and the application
may offer users an option to make them persistent. This
would be the computational equivalent of turning a live
metaphor into a dead metaphor, such as the “leg of the
table”. In the next section we will describe the
representations and calculations involved in metaphor and
metonymy interpretation.

3. MODELLING FOR METAPHORS AND
METONYMIES

Calculating metaphors and metonymies require some
representations, namely of: static and dynamic domain and
application models, enriched by classifications. In order to
describe how the domain and application models must be
represented, first we need to understand what is a user
utterance, and what variations of literal utterances we want
to be able to try to interpret.

A user utterance is a syntagmatic expression, a
combination of elements in the user interface language in a
sequence and following certain syntactic rules, or grammar
(Saussure, 1916). The interaction paradigm determines the
form of the expression: object+verb, verb+object, and so
on. We consider an utterance literal when the application
is able to provide a clear, direct and indubitable
interpretation, i.e., whose form and meaning are
completely defined within the underlying application
models.

A metonymic utterance occurs when someone refers to an
element by mentioning another element with which the
first has a relation of part-whole, content-container, cause-
effect, producer-product, and so on. For instance, when we
say “He’s got a Picasso”, we mean he’s got a work of art
produced by Picasso. In a computer application, we might
express “copy the boldface”, to mean “copy the text
formatted in boldface”. A simple example of an existing
application of metonymic reasoning occurs in some text
editors: when there is nothing selected and the text cursor
is inside a word, choosing bold formatting sets this word
in boldface. This is an instance of a content–container
metonymic chain (cursor location–word).

Still within computer applications, metonymies can also be
used to generate iterations and recursions. For instance, in
a graphical editor that allows users to group objects, if a
user selects a group and chooses a different fill color, it
iterates through all elements in the selected group and
applies the chosen fill color to each element individually.
Moreover, if an element is another group, the same
operation is done throughout its elements, recursively.
Nevertheless, these previously described usages of
metonymies are ad hoc, and cannot be generalized
throughout an application. This kind of metonymic
reasoning generally occurs in isolated cases, usually in
direct manipulation interfaces that allows for selection and
grouping of diverse elements. Users must learn each
situation where such facilities may be used, and cannot
predict the behavior of seemingly analogous situations.

The need for a consistent approach to metonymic
reasoning becomes more evident in command language
interfaces where users must generally know the exact
syntax of commands in order to get their job done. We
need to make designers aware of potential metonymic
chains and metaphorical expressions in their applications,

so they can take advantage of this kind of reasoning and
augment the language expressiveness, or rather, the
application’s abilities to generate a valid interpretation for
more user utterances.

In order to be able to generate metonymic expressions,
designers need to represent relations among elements, and
to identify which relations may be part of a metonymic
chain. Composition and aggregation relations, such as
part-of, are natural candidates for metonymy. Other
relations must be explicitly declared as having metonymic
potential, such as relations representing location,
ownership, possession, creation, and so on. From these
representations, we generate metonymies using the
following procedure:

For each element on a non-literal expression, traverse the
metonymic chains in the static domain model, making a
paradigmatic substitution and checking if the resulting
expression has a literal interpretation. We will call the
valid substitute metonymic target. The resulting command
would consist of an iteration through every element in the
original expression obtained by following the chain to the
metonymic target, or every metonymic target reached from
the original expression, depending on the direction
traversed.

In a metonymy, the direction of traversal should go from
“whole” or “producer” to “part” or “product”, and then if
the search fails it should go from “part” or “product” to
“whole” or “producer”. For instance, in a bibliographical
domain, if we have a relation “Quincas Borba” written by
“Machado de Assis” and we ask to copy “Machado de
Assis”, all references corresponding to literary works of
“Machado de Assis” would be copied. On the other hand,
if we ask to copy “Quincas Borba”’s biography, the result
would be the copy of the author’s biography (Machado de
Assis’s).

In order to be able to generate metaphorical expressions,
designers need to represent similarity of domain elements,
by some means of classification. For instance, let us define
the classification “in volume” including “in book”, “in
periodical”, and “in magazine”, but not “book”, if we ask
for Smith’s texts “in book” and there is none, a possible
result would be the set of all of Smith’s texts “in
periodical” and “in magazine”, but not his books.

Another use of metaphors arise when comparing the
relations between pairs of elements. For example, there
may be a relation “written by” linking a text to its author,
and the instances “O Cortiço written-by Aluísio de
Azevedo”, and “O Guarani written-by José de Alencar”.
The expression “Aluísio de Azevedo’s O Guarani” will
result in looking for an instance of “Something written-by
Aluísio de Azevedo”. [Note: This interpretation is on the
boundaries of poetic use. Our mechanism is not limited to
non-poetic cases; it can interpret rhetorically sophisticated

utterances as well.] If there are many valid instances
found, another criteria for disambiguation is called for,
and the attributes of these instances will be compared to
attributes of the original token “O Guarani”. The final
result could be “Aluísio de Azevedo’s most famous book,
O Cortiço”.

Our mechanism for generating metaphors can also be used
to create synonyms, that express the designer’s idea of
equivalence in particular contexts. For instance, in an
academic institution there might be a “text” classification
including “paper”, “article”, “report”, allowing an
interchangeable use of these terms.

Many researchers have investigated the computation of
analogies (Furtado, 1992; Hoftstadter, 1995; French, 1995;
Holyoak and Thagard, 1996). Our work is based on
Holyoak and Thagard’s criteria of similarity and structure.
When a non-literal utterance is encountered, the
application will first look for classifications in which the
elements ocurring in the utterance may be substituted by a
somewhat similar token, and check if the resulting
utterance is valid. If the utterance involves two types A and
B, we look for structural similarity that matches the
classical analogy model A:X::Y:B. If many different
alternatives are found, the mechanism may be designed to
look for similarities among the attributes of the eligible
types. The most similar candidate to the type occurring in
the original utterance would then be the selected
replacement.

We see from these representations, we may use
classifications, relations, and attributes to generate and
disambiguate metaphorical interpretations to user’s non-
literal expressions. When it is impossible to disambiguate
or when there are many alternatives, the application may
present these alternatives, together with an explanation

about how they were generated, and the user will then be
able to pick the one he or she intended, or discard all of
them and try to utter another expression.

The abductive mechanisms described here for generating
metaphors and metonymies are generic, but they are
applied to domain-specific models. They may be used in a
variety of domains, but the richness of representation will
determine the potential for abductions.

Although this approach is domain-independent, it depends
on the interaction style. In particular, on the level of
articulation and expressiveness allowed by the interface
language(s). For instance, a highly visual direct
manipulation interface has a low level of articulation and
expressiveness, while a command language may offer a
detailed level of articulation and higher expressiveness.
Researchers have shown that a combination of visual and
textual language styles maximizes the benefits and help
overcome the limitations of our approach (Maybury, 1993).

Next section will illustrate how these mechanisms can be
use to augment the user interface language expressiveness,
and to help users understand the underlying models.

4. MAKING SENSE: A SAMPLE CASE
Let us consider a simple toy application, inspired by Pattis’
world inhabited by robots and beepers (Pattis, 1995). This
world consists of 10 streets intersecting 10 avenues,
making up a total of 100 corners. A robot named Karel can
move from corner to corner, one step at a time, in the
direction it is facing. It can also turn left, pick elements
and put elements at its current corner. These elements can
be beepers, toys, blocks, platforms, and connectors. In this
world there are also walls, which the robot cannot traverse.
Figure 1 illustrates the static domain model of this world.

TRANSPORTABLE

THING

FIXED

part_of

is_a

located

CONTAINER

ACTOR

ROBOT

CORNER

WORLD

FEET

supports located

supports

part_of

part_of

is_a is_a

is_a is_a
is_a

is_a part_of

part_of

is_a

BLOCK PLATFORM CONNECTOR

BEEPER TOY WALL

Figure 1 — Static domain model of Karel’s world.

The static model presents not only inheritance (is_a) and
composition (part_of) relations, but any static relations the

designer should choose to represent, in this case: supports

and located. The represented types may also have attributes,
which we chose not to represent in this drawing for clarity
purposes.

The designer also defines which relations in the static
model can be used within metonymic chains. Composition
(part_of) relations are chosen by default. In our example,
the designer also chose the relations located, and supports.
Figure 2 shows a partial dynamic model of our domain,
illustrating a few operations and their pre- and
postconditions. Later in this section we will describe some
metonymic and metaphorical expressions generated using
these models.

ACTOR TRANSPORTABLE

has

CORNER

<actor> pick <transportable> operation

precondition

ACTOR

has

CORNER

postcondition

TRANSPORTABLE

<actor> paint <block> using <color> operation

precondition

BLOCK COLOR

postcondition
color

<actor> paint <platform> using <color>
operation

precondition

PLATFORM COLOR

postcondition
color

Figure 2 — Partial dynamic domain model of Karel's
world.

According to Figure 2, the designer has defined three
operations: <actor> pick <transportable>, <actor> paint <block>

using <color>, and <actor> paint <platform> using <color>. Let us
assume each type has two instances, called <type>-1 and
<type>-2, and that corners are referenced as corner(X,Y).

Some classifications are implicitly defined in the static
model, by inheritance relations (is_a). However, we often
need additional classifications in order to obtain more

sophisticated metaphorical utterances. Figure 3 presents
one of the classifications from the sample domain.

 values of attribute size: small, medium, large

classification
big_stuff

large big

wide

long
tall

classification
small_stuff

small

little

narrow
short

Figure 3 — Classifications to be used for generating
metaphors.

From the static and dynamic models and the
classifications, the following utterances exemplify
metaphorical and metonymic expressions that can be
generated:

user utterance corresponding sequences
of action

reasoning

robot-1 pick
platform-1

robot pick <toy> where
(platform-1 part_of <toy>)

metonymic

robot-1 pick
corner(1,3)

for every <transportable>
where (<transportable>
located corner(1,3)),
robot-1 pick <transportable>

metonymic

robot-1 paint toy-1
using green

for every <block> in (<block>
part_of toy-1),
robot-1 paint <block> using
green;
for every <platform> in
(<platform> part_of toy-1),
robot-1 paint <platform>
using green

metonymic

robot-1 paint block-1
using block-2

robot-1paint block-1 using
block-2.color

metonymic

robot-1 paint toy-
1.feet

robot-1 paint <platform>
where (<platform> part_of
toy-1)

metaphoric

robot-1 pick big
blocks

for every <block> where
<block>.size=large,
robot-1 pick <block>

metaphoric
(used here
for
synonym)

We have seen that there are two ways in which users may
make use of metaphors and metonymies, both supported by
our model. First, to understand the underlying domain and
application models, if the interpretations are combined
with explanations. This would be used primarily by naïve
users that are familiarized to a fraction of the application.
Second, expert users may use these mechanisms as a more
efficient way of communication, that can serve rhetorical
purposes such as focusing on some aspects of objects and
not others.

An application following this model can disclose the
generated interpretations, providing explanations than can

be triggered on demand or automatically. Such
explanations could incorporate the models, the operations,
and the utterances involved in such abductive processes,
and could make use of textual languages and visual
representations. The designer must be careful with the
level of interference when designing for disclosure and
explanations. A delicate balance between eagerness and
obtrusiveness should be reached, in order to keep naïve
users well informed about the interpretations, but not
hinder expert users’ efficient and more sophisticated
usages of the mechanisms. We agree, however, that some
feedback must always be produced in order to signal a non-
literal interpretation of a user’s input.

CONCLUSIONS
We have described a powerful mechanism to generate
interpretations for a non-literal expression. An application
allows users to express themselves inaccurately, by means
of a metaphorical or metonymic utterance that makes
reference to a known element of the domain. Following a
process of abductive reasoning, our mechanism generates
literal alternatives to the metaphorical or metonymic
utterance. The resulting interpretation has a volatile
nature, i.e., the substitution is only considered valid for the
current situation and context.

Our main contribution is to bring to the interface a
mechanism capable of abductively generating volatile
extensions based on immediate user input. Together with
metaphorical and metonymic operators, our approach
widens considerably the range of users’ valid utterances,
and allows for users’ more “natural” reasoning processes.
Thus, an application that follows our approach augments
the expressiveness allowed to users, and increases their
chance of producing the desired result, even when they do
not have a complete model of the application and
underlying domain.

Another benefit arises from the fact that our mechanism
can generate not only possible interpretations, but also
explanations about these interpretations, so it will further
disclose to users the underlying models. Since humans are
said to learn and understand concepts metaphorically
(Lakoff and Johnson, 1980; Lakoff, 1987; Ortony, 1993),
this may also reduce an application’s learning curve.

It is possible to generate multiple interpretations to a
single non-literal utterance. Therefore, we need heuristics
to disambiguate and give precedence to these
interpretations. Our model should be applied to a variety of
domains, in order to produce more refined heuristics. We
believe that some universal heuristics will be found, which
are valid across domains, and that more sophisticated
heuristics will prove to be domain-dependent. The issue
here is to decide whether these latter heuristics should be
embedded in the mechanism, or disambiguation should be
left to users at runtime. In our opinion, users play an
important role in this disambiguation process, so

applications should provide a means of interaction for
selecting the intended interpretation.

This paper has described a volatile extension mechanism,
used to generate situated interpretations, be it for
increasing naïve users’ understanding of the underlying
model, or for allowing expert users’ more efficient or
rhetorical usages. Our model also allows for persistent
extensions. In another publication (Barbosa, 1999), we
propose an application that coaches users step by step
through these extensions, disclosing the underlying models
and processes in detail, so that users are made aware of the
implications of the decisions made at each step, and of the
effect of the resulting extension. Moreover, we also predict
the occurrence of patterns of metaphorical and metonymic
use. An application could keep a history of these usages,
and allow for persistent extensions to emerge from these
patterns of frequently used metaphors and metonymies.

A design tool should also be developed to guide designers
through the representations needed for the abductive
process of generating metaphors and metonymies. Such a
tool should generate a set of metaphorical utterances
corresponding to each literal utterance, and the designer
would use this information to fine-tune the representation
in order to correctly reflect his or her assumptions about
the domain and the application.

ACKNOWLEDGMENTS
The authors would like to thank CNPq for providing
financial support to this work. They would also like to
thank the Semiotic Engineering Research Group at PUC-
Rio for their contributions to ideas presented in this paper.

REFERENCES
Adler, P. and Winograd, T. (eds., 1992) Usability: Turning
Technologies into Tools. New York, NY: Oxford
University Press.

Barbosa, S.D.J. (1999). Programação via Interface.
Doctoral Thesis. Departamento de Informática, PUC-Rio.
Rio de Janeiro.

Barbosa, S.D.J.; da Cunha, C.K.V.; da Silva, S.R.P.
(1998). “Knowledge and Communication Perspectives in
Extensible Applications”. In Proceedings of IHC’98.
Maringá, PR.

Barbosa, S.D.J.; da Silva, S.R.P.; de Souza, C.S. (1999).
“Extensible Software Applications as a Semiotic
Engineering Laboratory”. To be published in Working
Papers in the Semiotic Sciences. Legas, Ottawa, Canada.

Cypher, A. (ed., 1993) Watch What I Do: Programming by
Demonstration. The MIT Press. Cambridge MA.

da Silva, S.R.P.; Barbosa, S.D.J.; de Souza, C.S. (1997).
“Communicating Different Perspectives on Extensible
Software”. In Lucena, C.J.P. (ed.) Monografias em
Ciência da Computação. Departamento de Informática.
PUC-RioInf MCC 23/97. Rio de Janeiro.

de Souza, C.S. (1993). “The Semiotic Engineering of User
Interface Languages”. International Journal of Man-
Machine Studies. No. 39. 753-773.

de Souza, C.S. (1996). “The Semiotic Engineering of
Concreteness and Abstractness: from User Interface
Languages to End-User Programming Languages”. In
Andersen, P.; Nadin, M.; Nake, F. (eds.) Informatics and
Semiotics. Dagstuhl Seminar Report No. 135, p. 11.
Schloß Dagstuhl., Germany.

de Souza, C.S. (1999). “Semiotic Engineering Principles
dor Evaluating End-User Programming Environments”. In
Lucena, C.J.P. (ed.) Monografias em Ciência da
Computação. Departamento de Informática. PUC-RioInf
MCC 10/99. Rio de Janeiro.

DiGiano, C. (1996). “A vision of highly-learnable end-user
programming languages”. Child’s Play ’96 Position
Paper.

DiGiano, C. and Eisenberg, M. (1995). “Self-disclosing
design tools: A gentle introduction to end-user
programming”. In Proceedings of DIS ’95. Ann Arbor,
Michigan. August 23-25, 1995. ACM Press.

Eisenberg, M. (1995). “Programmable Applications:
Interpreter Meets Interface”. SIGCHI Bulletin. Apr. Vol.
27(2), ACM Press.

French, R. (1995). The Subtlety of Sameness. Cambridge,
MA: The MIT Press.

Furtado, Antonio L. (1992). “Analogy by Generalization –
and the Quest of the Grail”. ACM SIGPLAN Notices,
Volume 27, No. 1, January 1992.

Halasz, F. and Moran, T.P. (1982). “Analogy Considered
Harmful”. In Human factors in computer systems,
conference proceedings. Gaithersubrg, Maryland. ACM
Press.

Hintikka,J. (1997). What is Abduction? The fundamental
problem of contemporary epistemology. Unpublished
manuscript.

Hofstadter, D. (ed., 1995). Fluid Concepts and Creative
Analogies. Basic Books, A Division of HarperCollins
Publishers, Inc. New York NY.

Holyoak, K.J. and Thagard, P. (1996). Mental Leaps:
Analogy in Creative Thought. Cambridge, MA. The MIT
Press. 1996.

Jakobson, R. (1960). “Closing Statements: Linguistics and
Poetics”. In Thomas A. Sebeok (ed.) Style in Language.
Cambridge: The MIT Press.

Lakoff, G. (1987). Women, Fire, and Dangerous Things.
The University of Chicago Press. Chicago.

Lakoff, G. and Johnson, M. (1980). Metaphors We Live
By. The University of Chicago Press. Chicago.

Maybury, M.T. (ed., 1993). Intelligent Multimedia
Interfaces. Menlo Park, CA: American Association for
Artificial Intelligence.

Myers, B.A. (1992). Languages for Developing User
Interfaces. London. Jones and Bartlett Publishers, Inc.
Boston. 1992.

Nardi, B. (1993). A Small Matter of Programming.
Cambridge, MA: The MIT Press.

Nielsen, J. (1993). Usability Engineering. Academic Press.

Ortony, A. (ed., 1993) Metaphor and Thought, 2nd Edition.
Cambridge: Cambridge University Press.

Pattis, R.E.; Roberts, J.; Stehlik, M. (1995) Karel the
Robot: A Gentle Introduction to the Art of Programming.
New York, N.Y. John Wiley and Sons.

Peirce, C.S. (1931). Collected Papers. Cambridge, Ma.
Harvard University Press. (extraído de Buchler, Justus, ed.,
Philosophical Writings of Peirce, New York: Dover,
1955).

Preece, J.; Rogers, Y.; Sharp, E.; Benyon, D.; Holland, S.;
Carey, T. (1994). Human-Computer Interaction. Addison-
Wesley.

Saussure, F. de. (1916). Cours de Linguistique Générale.
Paris, Payot.

